
A Java Coordination Tool for Web-service
Architectures: The Location-Based Service

Context

P. Álvarez, J.A. Bañares, P.R. Muro-Medrano, J. Nogueras, and F.J. Zarazaga

Department Of Computer Science And Systems Engineering
University Of Zaragoza

Maŕıa de Luna 3, 50015 Zaragoza (Spain)
{alvaper, banares, prmuro, jnog, javy}@posta.unizar.es

http://iaaa.cps.unizar.es

Abstract. The use of open technologies and standards have made easier
the integration of Web services into end-applications. These interoperable
services have been organized on distributed architectures over Internet
in accordance with shared functional principles. But these Web-service
architectures have not resolved the distributed computing difficulty in
”gluing together” multiple and independent Web services. This paper
presents an approach based on Java technology and Internet standard
protocols and data formats for resolving coordination problems among
Web services. Interaction models based on distributed events over HTTP
are supported for providing the required coordination functionality. Co-
operation problems and their solutions have been studied in the proto-
typical context of Location-Based Services.

Keywords: Web-service architectures, distributed service cooperation, Internet, Java

and JavaSpaces Technologies

1 Introduction

Nowadays nobody doubts the Internet has become the most important global
network infrastructure. Many companies are enclosing as software services their
traditional computing tasks or introducing new tasks to connect them to Internet
at a rapid pace searching new promising opportunities. However, this growth
of services over the network has been faster than the formal efforts to agree
on service-oriented architectures [6] and to identify the necessary support for
enabling these distributed services to work together harmoniously [16].

First formal steps have progressed around the interoperability among sys-
tems (any Web service can interact with any other Web service [18]). This
way, SOAP (http://www.w3.org/TR/SOAP/) has become a de facto standard
for Web-service messaging and invocation, and for solving the problems of con-
verting data between traditional distributed platforms such as CORBA, DCOM
or EJB [19]. Additionally, many standardization initiatives have arisen in specific

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



research areas for defining open, ubiquitous and interoperable service interfaces,
such as the area of the Location-based Services (LBS).

LBS extend the spatial processing capabilities of the Geographic Informa-
tion Services (GIS) integrating wireless communications, location data and In-
ternet technology [25, 12]. In this context, two well-positioned organizations have
emerged as the drivers of the LBS interoperability: LIF (Location-Interoperability
Forum, http://www.locationforum.org/) and OGC (Open GIS Consortium,
http://www.opengis.org/, and its Open Location Service Initiative (OpenLS),
http://www.openls.org/). Both are promoting and defining standard inter-
faces for a collection of wireless, Location and GIS services for providing the
required LBS functionality [2, 26, 29]. These public interfaces make easier the
integration through Internet of these distributed services into end applications
as individual computing entities, but in an isolated way, they have a very limited
functional value. Therefore, LBS context may be considered as a prototypical
technological-context where it may be evaluated the impact of the integration
of industrial web-centric standards over the development of distributed applica-
tions.

Once services and their interfaces have been described, it arises the neces-
sity of establishing an organization for supporting their use, interactions and
automated discovery. This organization must define an architecture that pro-
vides a framework for making easier the collaborative work among the services
and the access to them [14]. Past architecture experiences such as [24, 31] could
help us to define these future ones: problem in the use of the object technology
in large-scale applications when it must be combined and recombined [23], and
in building of component-based frameworks [21]. Besides, in order to integrate
services implemented with different computational models, services must coop-
erate and to be ensemble over this architectural vision in an orthogonal way to
their computing tasks [8], allowing to exploit the true value of services beyond
independent computing entities.

This work presents a coordination Web-service for distributed architectures
over Internet which has been used inside the LBS context as a prototypical
domain. This support service has been implemented in Java so it could be used
independently of the hardware platform and the operating system on which it is
being executed. Internet is a distributed environment where many hardware and
software configurations can be found (http://leb.net/hzo/ioscount/data/
r.9904.txt). Therefore, Java as programming language of Web services, is the
key for achieving the required platform portability and independence. Besides, it
provides a number of built-in networking capabilities that make it easy to develop
Internet-based and Web-based applications [10]. A more detailed description of
our technological evolution towards this approach may be found in [4].

The paper is structured as follows. Section 2 presents a description of ser-
vices provided by standards that constitute the LBS framework. It is shown in
a succinct way the underlying conceptual model, the hierarchical levels of func-
tionality, and the found problems in order to orchestrate these services. Section
3 justifies the adopted coordination-approach based on JavaSpaces technology

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



and standards to develop web-centric solutions from XML and HTTP. Section
4 shows design and implementation details. Section 5 reviews the benefits of the
proposal. Finally, future work and conclusions are presented.

2 A Web-Service Architecture for Providing LBS
Functionality

2.1 Conceptual Model of Architecture

In general, a Web-service architecture is composed by a collection of services
that are organized according to any functional aspects. An example of this kind
of distributed architectures are the LBS frameworks, which integrate GIS and
Location Services [26, 28, 32]. According to the functional aspects related to this
LBS context, a conceptual model of architecture has been defined.

The proposed model is hierarchical and organized in relation to the level of
intensity of data processing involved. Three functional levels of services have
been identified:

– Data Management, which is responsible for data storage and recovery.
– Data Processing, which generates new data from raw data.
– Data Analysis, which provides high-level functionality from generated data

by the lower levels.

It is important to underline that requirements of levels are not independent
in this model. Processing level requires raw data storage, and analysis level is
built on the lower levels.

2.2 Building a LBS Framework on the Basis of Web Services

The presented architectural model has been the conceptual base for the devel-
opment of a LBS framework whose functionality may be integrated into end-
applications through Internet (see fig. 1), such as ERP or CRM systems [4].
Required services are organized according to the proposed functional levels and
built according to the Web-service philosophy: their operations are provided
through a standard, published interface to ensure interoperability, and are ac-
cessible via ubiquitous Internet protocols and data formats, such as HTTP and
XML.

The Data Management level is the base of the proposed architecture. Its
services must be able of providing the necessary support for the storage and
recovery of geodata. LBS frameworks require a wide variety of geodata: georef-
erenced maps; location descriptors such as street addresses, roads, place names
or telephone numbers; sensor data such as immediate locations of mobile de-
vices; or more specific data of the LBS context, such as traffic conditions or
road repairs. A collection of services has been implemented for fulfilling these
requirements. For example, basic GIS services: Web Map Server (WMS), for

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



Fig. 1. LBS Web-service architecture

visualizing digital maps on the Internet as rendered raster data [3, 13]; Web Fea-
ture Server (WFS), for storing, spatial and non spatial querying and discovering
geographical features, such as the previously presented location descriptors [1];
and Web Traffic Server (WTS) [26], for providing traffic conditions of a specific
region of interest. Interfaces of these services have been developed following the
specifications proposed by the Open GIS Consortium (OGC).

Besides these GIS services, Location Services are required for communicating
with remote sensors, an example could be services for acquiring location data
from mobile devices throw wireless media to send and receive location requests
and responses. These services define their interface according to the LIF (Loca-
tion Inter-operability Forum) specification, which describes a Mobile Location
Protocol (MLP) that can be used by an Internet application to request location
information from a Location Server. As a part of this Location Services, it is
possible to integrate the Mobile Positioning Servers provided by a telecommu-
nication operator through its Location Service Platform.

Geodata provided by these Data Management services are not usually used
in an isolated way, instead they are used by the Data Processing services for
generating more complex and elaborate data. It is interesting to have services
for combining different kinds of geodata, such as maps and location descriptors;
for linking many location descriptors; or for calculating structured geodata, such
as ideal routes from a set of mobile-device locations.

To achieve this functionality, geospatial services have been implemented for
geodata presentation (such as, Style Layer Descriptor Server), utility (Gazetteers
and Geocoders), and determination (Route Server and Tracking Server). De-

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



tails about their specifications can be found in [26]. A Style Layer Descriptor
Server (SLD) visualizes the result of a WFS query over a digital map returned
by the WMS, applying a visualization style specified by the service client to
the displayed geoinformation. On the other hand, the implementation of the
WFS has been utilized as the baseline for developing another geoservices [11, 4]:
Gazetteers, used to link text-based location descriptions to geographic locations;
Geocoders, used to transform a textual term or code, such as an address, place
name, or telephone number, into a geographic location; Route Server, used to
calculate ideal routes along a set of locations; and Tracking Server, used to store,
query, retrieve the latest known geographic location of mobile device. The Track-
ing Server is not proposed in the OpenGIS specification. However we propose it
as a natural way to provide mobile data.

Finally, at the higher level of the architecture, the Data Analysis level is
composed by specific application services, such as the Mobile-Resource Tracking
Service (MRTS), built on the lower-level services for integrating their functional-
ity into end-applications through Internet. This service allows to make tracking
tasks of mobile resources with an installed location-device (such as, vehicles or
employees with a mobile phone with an integrated GPS-receptor), to visualize
their real-time positions, to plan a route and tracking it, or to generate opera-
tional reports. To provide these operations through its interface, it is necessary
that data and geoprocessing services of lower levels collaborate among them in
an adequate way as an only global system.

2.3 Problems in the real implementation

The interoperability among built services is guaranteed by the use of Internet
protocol and data format for accessing to services’ operations, and by the defini-
tion of these operations according to widely accepted standards (OpenGIS and
LIF specifications). Services may interoperate, making easier the integration of
services provided by different suppliers. The need of cooperation has been al-
ready identified when the conceptual model was presented: ”the requirements of
levels are not independent”.

But the problem is more complex. The remarked interoperability guarantees
that services communicate and understand among them. However, from this
standard-based interoperability, it is also necessary to have tools for orchestrat-
ing services: defining chains of services, synchronizing services and services with
applications, or building more complex communication models than HTTP. This
need becomes more apparent when the specific implementation of the proposed
model is built. For example, the Mobile-Resource Tracking Service requires that
services of lower levels collaborate among them for providing its application
functionality.

A collection of restrictions has been found in the development of the pre-
sented LBS framework that could be extrapolated to other contexts. They are
mainly related with the functional characteristics of Location Services and the
difficulties for communicating them with other distributed services, such as data
and geoprocessing GIS services:

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



1. Location Services have not persistence for storing received locations from
mobile devices. If a service requests the geographic location of a device for
processing it, a Location Service must communicate with the remote mobile-
device for acquiring and providing it to the requester service.

2. Many location-data consumers are not simultaneously supported. Owing to
the fact that a Location Service has not persistence and its interface’s opera-
tions are invoked using the HTTP Internet protocol, the invoker service can
only receive the requested location. If many services require the location-data
of a same device, then each one must make an independent request.

3. Asynchronous responses for operations of the interface are more adequate.
A service can request an immediate location of a device or a periodic col-
lection of them, but a Location Service does not know in advance how long
it is required for acquiring and receiving the requested location. This fact
is owing to the introduced delay by communication networks. Therefore an
asynchronous model for receiving location responses is more adequate. How-
ever, HTTP provides a synchronous request/response model.

4. A Location Service provides operations whose initiative comes from remote
mobile-devices and not from the service client. For example, generation of
emergency alarms or location events when a device comes into/out from a
specific geographical region. Service clients must be able to subscribe to be
notified when those alarms or events happen, instead of being continuously
requesting to the Location Service to check their occurrence through its
HTTP interface.

These restrictions show the need of a more complex communication mecha-
nism among Web services than the one provided by the HTTP protocol:1) able
to store exchanged data and to support many consumers and 2) an asynchronous
and reactive communication model. Besides, these communication requirements
involve matters of service synchronization too: services can be waiting for re-
ceiving new location data or being notified by alarms or events for doing their
task, such as to update the vehicle location or to show a new alarm on a digital
map, to track a predefined route or to recalculate a tracking report. Therefore,
the particular target is to provide a high-level tool for coordinating (commu-
nicating and synchronizing) Location Services with GIS services. However, this
target will be deal with a broader perspective, trying to provide a flexible tool
to coordinate any Web service over Internet.

3 Coordinating Web Services

To make possible the coordination among services in an Internet-architecture,
the proposed solution has been designed and implemented as a new support-
service to provide coordination functionality. Using this new service, distributed
services over Internet could communicate and synchronize among them. This co-
ordination service has been built in accordance with the Web-service philosophy
for making easier its integration into open architectures: coordination functional-
ity must be accessible via ubiquitous Internet protocols and data format, such as

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



HTTP and XML; its open interface must hide the implementation details of the
service, such as the hardware or software platform on which it is implemented or
the programming language in which is written; and it must encourage a flexible
and loosely-coupled interaction among Web services.

3.1 A Coordination Model for Distributed Environments

Before building the service, a coordination model for representing supported in-
teractions must be defined. However, it has not been considered the possibility
of creating a new model starting from scratch because there are some proposed
solutions that can be used as starting points (the creation of a new one should be
a different objective and involve other research areas different from our focus). A
distributed shared memory (DSM) model for inter-process communication has
been selected. This model provides the illusion of a shared memory allowing
communicating processes to be uncoupled logically, temporally, and spatially. A
well-known DSM model is the Generative Communication [17, 7]. It is based on
a so-called blackboard that is used as a shared data space. Entities communi-
cate by putting messages into the blackboard, which can be retrieved later by
other entities asking for a certain template message. In the model, senders do
not have any prior knowledge about receivers and vice versa. This uncoupling
is necessary in an open environment, such as Internet, because it is very impor-
tant to reduce the shared knowledge between different entities to the minimum.
Moreover, this model presents another basic advantage, entities can be replaced
or added without adapting or announcing other entities.

The Generative Communication model is based on writings into and readings
from a shared space. But it has a failure if writing and reading processes work in
a hostile and not reliable environment, such as Internet. The reading operations
are blocked if no desired message is available into the space yet. Besides, they
may involve long waits.

An event-based approach suggests the possibility of improving the collection
of operations proposed by the Communication Generative model, adding a more
reactive coordination style. Processes subscribe their interest in receiving event
notifications when other writing process insert specific messages into the shared
space, instead of being blocked until messages are received.

This communication style, which is very prevalent for distributed systems [9],
makes easier and loosely coupling communications [27]. Furthermore, this event-
based communication style allows to model asynchronous data communications,
identifying a read operation from the space as a subscription and a non-blocked
waiting for the event notification.

3.2 Building the Coordination Service

A Java implementation of the Generative Communication model, called JavaS-
paces Technology[15], has been used for building the coordination service. In
JavaSpaces a collection of processes may cooperate via the flow of Java objects
into and out of one network-accessible shared space. Besides, the Jini Distributed

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



Event model is incorporated into JavaSpace for firing events when entries that
match templates are written into a space. It allows to react to the arrival of
entries as they are placed in a space.

The built coordination Web-service encapsulates one or more spaces imple-
mented by JavaSpaces, and provides through its interface the proposed opera-
tions by the extended Generative Communication model. In order to coordinate
Web services through Internet, these operations are accessible through HTTP
protocol.

Distributed services cooperate among them inserting and retrieving messages
into/from the encapsulated space using the HTTP operations provided by the
coordination service interface. Exchanged messages are encoded in XML format,
and producing and consuming services must understand their content. Standards
which define how to express the exchanged data (such as the MLP proposed by
LIF that defines XML-Schemas for location, alarm or location-event data) are
used for achieving this syntactic interoperability.

4 Design and Implementation of the Coordination
Web-service

According with the ideas proposed before, a coordination web-service has been
implemented and tested in the LBS context. Its kernel consists of three software
components (see fig. 2):

XML-Based Space Component This component has been implemented as
a Remote Method Invocation (RMI) server over the technological base of JavaS-
paces. Its interface provides a collection of operations for writing XML-messages
into and reading them from an interaction space and being notified of the writing
of a new XML-message into the encapsulated space, according to the previously
model presented.

The encapsulated interaction space is a Java space provided by the JavaS-
paces implementation (see fig. 3). It allows storing and retrieving Java objects.
Therefore, the XML-messages must be internally stored as Java objects. A
generic object, called XMLEntry, has been defined for representing an XML-
message. This object is able to parser the XML-message and stores the informa-
tion of its nodes and vice versa, restoring the original XML-message.

The main problem to solve by the use of JavaSpaces is how to specify XML-
templates for retrieving XML-messages from the space. The matching rules of
JavaSpaces say that a template object and an inserted object can potentially
match only if (1) they are from the same class and (2) for each field that is not
wildcards in the template object, it must have the same value as its corresponding
field in the inserted object. These rules have been extended for working with
XML-messages: the XML-Schema is the class of an XML-message, and each node
of the message is a field. At the present, simple Schemas are only considered. But
in the future, a subset of the XQL language specification will be incorporated

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



Fig. 2. Software Components of the coordination kernel

to the matching rules for supporting more complex XML queries. XQL is a
path expression based query language proposed to the W3C query workshop
(http://www.w3.org/TandS/QL/QL98/pp/xql.html).

Java Coordination Component This Java component is the core of the
coordination service. It has two different interfaces: Basic Coordination Interface
(BCI), which provides the collection of writing and reading operations proposed
by the Generative Communication model and encourages a cooperative style
based on blocking readings; and Reactive Coordination Interface (RCI), whose
operations allow a process advertising its interest to generate a specific type
of XML-messages, publishing the advertised XML-messages and subscribing its
interest to receive XML-messages of a specific type, encouraging a reactive style
of cooperation among processes.

When an external process invokes an operation of the interface, a proxy of the
invoker process is created inside the component for representing it (see fig. 3).
External processes delegate their coordination tasks to their respective internal
proxies, which cooperate among them exchanging XML-messages through one or
more XML-based Spaces. Therefore, the coordination among external processes
happens among their internal proxies, which communicate them the cooperation
result. According to the invoked operation, a proxy expert on communication,
synchronization or reactive behaviour is created. Proxies has been implemented
as Java process able to act as clients of XML-based spaces for exchanging mes-

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



sages with another proxies and as remote listeners that can be called by spaces
when a matching occurs.

Proxies must be able to inform about its internal state and to push data to
respective external processes. This connection between both must be established
when the proxy is created and remained until it is destroyed. The technique used
to connect each other depends on the executing environment where is being
used the Java Coordination Component. For example, if a collection of Java
processes are cooperating through the developed coordination component and
both are running inside a same Java Virtual Machine (JVM), processes and
their respective proxies can be connected through message passing. However, in
a distributed environment, such as Internet, the HTTP streaming technique can
be used to connect them. It consists of remaining open an HTTP connection
to push fresh data from the proxy to the remote process (see fig. 3). These
processes may even be simple HTML-pages able to receive JavaScript events
(for more details, http://www.pushlets.com/). In this case, exchanged data
are the XML-messages that are the result of its coordination task.

Fig. 3. Coordination Kernel Details

HTTP Coordination Component This component plays as a web-accessible
interface of the Java Coordination Component previously presented, providing

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



through its HTTP interface the same collection of operations. This interface
allows web-applications to cooperate independently of the hardware and soft-
ware platform where they are running and independently of the programming
language in which they are written.

The core of this component has been implemented as a Java Servlet, a Java
program that resides and executes on a Web-Server, in this case on Apache
Server (http://www.apache.org/) using Tomcat as a servlet container
(http://jakarta.apache.org/tomcat/).

5 Benefits of the Proposed Approach

This section presents how the proposed coordination Web-service is able to solve
the identified communication problems among Location Services and other dis-
tributed GIS services:

1. Spaces encapsulated into the coordination service are persistent and mes-
sages may be indefinitely stored into it. Therefore, Location Services can use
it as a persistent repository of location data writing received locations from
the mobile devices into it.

2. Many distributed services are simultaneously able to access to the coordi-
nation service for reading a stored message, such as a location data. So, a
location that has been requested and stored into the coordination service
may be shared by many consuming services.

3. The publishing and subscribing operations provided by the coordination ser-
vice’s interface support an asynchronous interaction model. It allows time-
uncoupled interactions between producing and consuming processes.

4. Distributed services can be subscribed for retrieving messages instead of be-
ing making constant readings over the coordination service, being the server
who has the notification-based initiative.

6 Conclusions and Future Work

In this work it has been presented an architectural model for organizing Web ser-
vices and an implementation of it based on standards in the context of the LBS.
Despite the lack of problems from a conceptual point of view, real restrictions
arise when distributed services must work together harmoniously. For resolving
them, it is proposed a coordination Web-service implemented using Java and
Internet technologies. The coordination functionality provided by the service is
orthogonal to the computing functionality offered by the coordinated entities.
This fact keeps the independence between the computing and coordination mod-
els.

Open research issues are trying (1) to discover the real potential of the XML
language to express synchronization restrictions and work flows among Web ser-
vices, and (2) to add a new component that integrates thesaurus and ontologies

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



for supporting the semantic interoperability among Web services. The under-
lying idea is to extend the concept of matching rules in the way that different
values and XML representations will match if correspond to the same concept
[22, 30].

Finally, it is important to have a formal instrument for reasoning upon the
behaviour of coordinated distributed-services and the coordination service. From
a formal point of view, Petri nets are the most attractive formalism for mod-
elling concurrent system that allows formal analysis, graphic representation and
the execution/simulation of the system models. In this sense, advanced software
development approaches for modelling, implementing and reasoning upon open
parallel and distributed systems are based on principles presented in this paper,
that is, concurrent object-orientation, generative communication, and Petri nets.
In [20] it is presented a Petri net formalism to provide semantics for the Objec-
tive Linda language, and modelling the internal behaviour of concurrent objects;
and in [5] it is presented transition merging as the main mechanism to represent
the interaction between concurrent objects, providing a symmetric form of com-
munication very close to generative communication that allows the cooperation
of an arbitrary number of entities, and no direction of communication.

Acknowledgment

The basic technology of this work has been partially supported by the Span-
ish Ministry of Science and Technology through projects TIC2000-1568-C03-01,
TIC2000-0048-P4-02 and FIT-0700002000B270827 from the National Plan for
Scientific Research, Development and Technology Innovation, co-supported by
FEDER resources.

References

1. OpenGIS Project Document 01-065, Web feature server implementation specifica-
tion (version 0.0.14), Tech. report, OpenGIS Consortium Inc, 2001.

2. OpenGIS Project Document 02-112, The OpenGIS abstract specification. Topic12:
OpenGIS service architecture (version 4.3), Tech. report, OpenGIS Consortium
Inc, 2002.

3. OpenGIS Project Document 99-077r4, OpenGIS Web map server interface speci-
fication (version 1.0), Tech. report, OpenGIS Consortium Inc, 2000.

4. P. Álvarez, J.A. Bañares, P.R. Muro-Medrano, and F.J. Zarazaga, Integration of
location based services for field support in CRM systems, GeoInformatics 5 (2002),
no. July/August, 36–39.

5. J.A. Bañares, P.R. Muro-Medrano, J.L. Villarroel, and F.J. Zarazaga, Object-
oriented programming and Petri nets, Lecture Notes in Computer Science, no.
2001, ch. KRON: Knowledge Engineering Approach Based on the Integration of
CPSs with Objects, pp. 355–374, Springer Verlag, Berlin Heidelberg 2001, 2001.

6. S. Burbeck, The tao of e-business services. The evolution of Web applications
into service-oriented components with Web-services, Available in http://www-
4.ibm.com/software/developer/library/ws-tao/index.html, October 2000.

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



7. N. Carriero and D. Gelernter, Linda in context, Communications of the ACM 32
(1989), no. 4, 444–458.

8. , A computational model of everything, Communications of the ACM 44
(2001), no. 11, 77–81.

9. A. Carzaniga, E. Di Nitto, D.S. Rosenblum, and A. Wolf, Issues in supporting
event-based architectural styles, 3rd International Software Architecture Workshop
(Orlando FL, USA), November 1998, pp. 17–20.

10. H.M. Deitel, P.J. Deitel, and T.R. Nieto, Internet and world wide Web. How to
program, Pentice Hall, 2000.

11. V. Dessard, GML & Web feature server. The baseline for online geoservices, GeoIn-
formatics 5 (2002), no. March, 38–41.

12. ESRI, What are location services? the GIS perspective, Available in
http://www.geojava.com, December 2000.

13. P. Fernández, R. Béjar, M.A. Latre, J. Valiño, J.A. Bañares, and P.R. Muro-
Medrano, Web mapping interoperability in practice, a Java approach guided by
the OpenGis Web map server interface specification, EC-GIS. 2000, 6th European
Commission GI & GIS Workshop (Lyon, France), May 2000.

14. P. Fingar, Component-based frameworks for e-commerce, Communications of the
ACM 43 (2000), no. 10, 61–66.

15. E. Freeman, S. Hupfer, and K. Arnold, Javaspaces. Principles, patterns, and prac-
tice, Addison Wesley, 1999.

16. F. Friday, N. Davies, and E. Catterall, Supporting service discovery, querying
and interaction in ubiquitous computing environments, Second ACM International
Workshop on Data engineering for wireless and mobile access, Santa Barbara, Cal-
ifornia (USA), ACM Press, 2001, pp. 7–13.

17. D. Gelernter, Generative communication in Linda, ACM Transactions on Program-
ming Languages and Systems 7 (1985), no. 1, 80–112.

18. G. Glass, The Web services (r)evolution. Applying Web services to applications,
Available in http://www-4.ibm.com/software/developer/library/ws-peer1.html,
November 2000.

19. S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and
R. Neyama, Building Web services with Java. Making sense of XML, SOAP,
WSDL, and UDDI, SAMS, 2002.

20. T. Holvoet and P. Verbaeten, Object-oriented programming and Petri nets, Lec-
ture Notes in Computer Science, no. 2001, ch. Using Petri Nets for Specifyin Ac-
tive Objects and Generative Communication, pp. 38–72, Springer Verlag, Berlin
Heidelberg 2001, 2001.

21. G. Larsen, Component-based enterprise frameworks, Communications of the ACM
43 (2000), no. 10, 25–26.

22. E. Mata, J.A. Bañares, J. Gutiérrez, P.R. Muro-Medrano, and J. Rubio, Semantic
disambiguation of thesaurus as a mechanism to facilitate multilingual and thematic
interoperability of geographical information catalogues, Proceedings of the 5th AG-
ILE Conference on Geographic Information Science (Palma de Mallorca, Spain),
April 2002, pp. 61–66.

23. M. Mattsson, J. Bosch, and E. Fayad, Framework integration. problems, causes,
solutions, Communications of the ACM 42 (1999), no. 10, 81–87.

24. P.R. Muro-Medrano, D. Infante, J. Guilló, F.J. Zarazaga, and J.A. Ba nares, A
CORBA infrastructure to provide distributed GPS data in real time to GIS appli-
cations, Computers, Environment and Urban Systems 23 (1999), 271–285.

25. H. Niedzwiadek, All businesses are in pursuit of Java location services, Available
in http://www.geojava.com/, January 2000.

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.



26. OpenLS, A request for technology. In support of an open location services (OpenLS)
testbed, Tech. report, OpenGIS Consortium Inc, 2000.

27. D.S. Rosenblum and A. Wolf, A design framework for Internet-scale event obser-
vation and notification, Proceedings of the sixth European Software Engineering
Conference (Zurich, Switzerland) (M. Jazayeri and H. Schauer, eds.), Springer-
Verlag, September 1997, pp. 344–360.

28. J.C. Thill, Geographic information systems for transportation in perspective, Trans-
portation Research Part C: Emerging Technologies 8 (2000), no. Issues 1-6,
February-December, 3–12.

29. J. VanderMeer, Ubiquitous wireless location interoperability, Available in
http://www.directionsmag.com/, July 2002.

30. U. Visser and H. Stuckenschmidt, Interoperability in GIS. Enabling technologies,
Proceedings of the 5th AGILE Conference on Geographic Information Science
(Palma de Mallorca, Spain), April 2002, pp. 291–297.

31. F.J. Zarazaga, P. Álvarez, J.A. Bañares, J. Nogueras, J. Valiño, and P.R. Muro-
Medrano, Examples of vehicle location systems using CORBA-based distributed
real-time GPS data and services, Computers, Environment and Urban Systems 25
(2001), 293–305.

32. A.K. Ziliaskopoulos and S. Travis Waller, An Internet-based geographic informa-
tion system that integrates data,models and users for transportation application,
Transportation Research Part C: Emerging Technologies 8 (2000), no. Issues 1-6,
February-December, 427–444.

Proceedings of the FIDJI International Workshop on the Scientific Engineering of distributed Java Applications. 2002, p. 33-46.




