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A B S T R A C T
The volatility of corn prices poses a significant challenge for both producers and policymakers.
This study proposes a hybrid model that combines Extreme Gradient Boosting (XGBoost) and
Light Gradient Boosting Machine (LightGBM), optimized through Particle Swarm Optimization with
Cuckoo Search (PSO-CS), for accurate corn price forecasting. The approach integrates multivariate
time series data, including local prices from the Atlántico market and international futures prices from
the Chicago Board of Trade (CBOT). Empirical Mode Decomposition (EMD) is applied to enhance
signal clarity and improve model performance. Model performance is assessed through sensitivity
analysis and statistical comparison using the Diebold-Mariano (DM) test. The results demonstrate
that the proposed ensemble outperforms both individual models and neural network combinations,
achieving a Mean Absolute Percentage Error (MAPE) of 2.06

1. Introduction
Agriculture plays a fundamental role in the economies

of developing countries due to its contribution to domestic
production and employment, serving as a source of
livelihood for approximately 2.57 billion people and acting
as a cornerstone of food security, according to data from
the Food and Agriculture Organization of the United
Nations (FAO, 2020). However, despite technological
advancements, the sector still faces challenges, particularly
for small scale producers. In this context, the Organisation
for Economic Cooperation and Development (OECD) and
the FAO, in their Agricultural Outlook 2021–2030 report,
highlight the rising global demand for agricultural products
especially cereals such as maize driven by shifting
consumption patterns and the growing share of
animal-based products in global diets (OECD and
FAO,2021). Maize and protein meals are projected to
account for more than 66% of total forage consumption by
2030, while the share of maize used for biofuels is expected
to decline from 15.8% to 13.7%. However, the anticipated
increase in global maize production and the release of
strategic reserves are expected to meet the increasing
demand for food, feed, and biofuels, potentially leading to a
downward trend in the international reference price of
maize.

Yellow maize is a strategic crop in Colombia, as it
serves as the foundation for the production of animal feed,
an essential input for the livestock sector, particularly the
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poultry industry, which supplies chicken meat and eggs,
both of which are fundamental to the Colombian diet and
household consumption (Arbeláez et al., 2024). Between
2010 and 2023, national mechanized yellow maize
production increased by 49. 3% (from 0.5 to 0.8 million
tons), while imports increased by 71.6% (from 3.4 to 5.9
million tons) (WFP, 2024). This growth has been driven by
increasing demand for poultry products, alongside
improvements in production processes and mechanization
(CIMMYT and CIAT, 2019). However, domestic
production remains insufficient, forcing the country to meet
approximately 80% of its demand through imports, mainly
from the United States, Brazil, and Argentina countries
with higher yields and more competitive production costs
(UPRA, 2022). As a result, Colombia faces a deficit of
nearly 4.6 million tons of yellow maize, increasing its
vulnerability to international price fluctuations and directly
impacting the cost of poultry and other staple food products
(BMC, 2023).

To address the volatility of agricultural product prices
and support strategic decision-making, predictive models
based on advanced time series analysis techniques have
been developed. These models are capable of handling the
non-stationary and nonlinear nature of agricultural data
(Zhao, 2021). Among traditional statistical approaches,
models such as ARIMA, ARCH, and GARCH have been
widely used, although they present notable limitations
particularly the need for large volumes of historical data
that meet strict statistical assumptions (Nafkha and
Suchodolska, 2024). In contrast, machine learning (ML)
techniques, particularly those based on artificial neural
networks (ANNs), have shown greater reliability in
modeling nonlinear relationships (Hiyam et al., 2024),
outperforming statistical methods by capturing complex
patterns and uncovering hidden interactions within market
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dynamics (Adebiyi et al., 2014). Within this category,
recurrent neural networks (RNNs) are especially effective
for time series analysis, as their feedback connections allow
them to retain past information—unlike conventional
ANNs, which fail to adequately capture the temporal effects
of significant historical events.

Various ML techniques have been successfully applied
to agricultural time series forecasting. Multilayer
Perceptron (MLP) networks are valued for their ability to
approximate nonlinear functions and process multivariate
inputs, though they require the definition of meaningful
input output mappings (Lee and Xia, 2024). Convolutional
Neural Networks (CNNs) complement these advantages by
offering pattern recognition capabilities, but they fall short
in capturing temporal dependencies. Meanwhile, Support
Vector Regression (SVR), based on the principle of
structural risk minimization and kernel-based nonlinear
mapping, has been successfully applied to complex
agricultural contexts (Zheng et al., 2020). Likewise, the
Extreme Gradient Boosting (XGBoost) algorithm
incorporates bagging and boosting techniques to optimize
differentiable loss functions (Wu et al., 2024). Finally,
Long Short-Term Memory (LSTM) networks, specifically
designed to capture temporal dependencies and address
vanishing/exploding gradient problems, have demonstrated
strong predictive performance. However, their training
process demands significant computational resources and
careful parameter tuning (Chung and Shin, 2018).

Recently, a growing trend has emerged in combining
ML algorithms with time series decomposition methods
and optimization techniques to enhance model accuracy
and robustness in agricultural forecasting. Decomposition
methods such as STL (Seasonal and Trend decomposition
using Loess) and EMD (Empirical Mode Decomposition)
allow time series to be broken down into simpler
components trend, seasonality, and residuals facilitating the
modeling of complex patterns when used in conjunction
with ML techniques. Simultaneously, optimization
algorithms such as Particle Swarm Optimization (PSO),
Genetic Algorithms (GA), and Cuckoo Search (CS) have
been employed to fine-tune model hyperparameters and
architectures, improving performance in nonlinear
environments. These hybrid combinations have led to the
emergence of highly efficient models, some of which are
classified as state of the art (SOTA) algorithms,
representing the most advanced solutions available.
Notable examples include LSTM-EMD-PSO and
XGBoost-STL-GA, which integrate temporal modeling,
adaptive decomposition, and optimized configuration to
achieve higher accuracy in maize price forecasting.

Nevertheless, despite these advancements, a significant
gap remains in the integration of multivariate data
combining both national and international
sourcesparticularly within the context of developing
countries. In the specific case of Colombia’s maize market,
most existing studies focus exclusively on local price
series, overlooking the predictive potential of incorporating

variables such as international futures prices (e.g., CBOT),
climate indicators, or seasonal trends.

This paper is organized as follows: Section 2 details the
contributions derived from the development of the article.
Section 3 presents a literature review to contextualize the
proposed work. Section 4 describes the methodology used.
Section 5 outlines the preliminary concepts relevant to the
development of the study, while Section 6 presents the
results and discussion. Finally, Section 8 closes the
document with the conclusions.

2. Contributions
The primary objective of this research is to predict the

price of technified yellow corn in Colombia using a time
series of historical prices from a market in the Colombian
Caribbean region. Additionally, the study aims to assess
how the inclusion of corn futures contract prices from the
Chicago Board of Trade (CBOT) can enhance the
performance of the predictive model. Specifically, it seeks
to determine whether incorporating these futures prices
improves the model’s ability to forecast price fluctuations.
This research contributes to strengthening strategic
decision-making processes for market participants by
providing them with a more accurate and reliable predictive
model. The key contributions of this article are as follows:

• The application of the Empirical Mode
Decomposition (EMD) method to the time series of
corn prices in Colombia, enabling the identification
of the optimal intrinsic mode functions (IMFs) that
best capture price fluctuations.

• The development of predictive models was carried
out using various algorithms to forecast corn prices
in Colombia, based on historical price data. The
selected models include: Fully Connected Network
(FCN), Recurrent Neural Network (RNN), eXtreme
Gradient Boosting (XGBoost), and Light Gradient
Boosting Machine (LightGBM). The optimal model
was identified based on its performance according to
standard evaluation metrics.

• Another contribution of this study is the systematic
use of evaluation metrics to validate the predictive
performance of the models. The metrics applied were
Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error
(MAPE), and the Coefficient of Determination (𝑅2).
These measures enabled a rigorous comparison of
both individual and ensemble models under
univariate and multivariate settings. .

• Development of a novel multivariate forecasting
architecture that employs an ensemble strategy
optimized through Particle Swarm Optimization
(PSO) to integrate heterogeneous predictive models.
This approach dynamically assigns optimal weights
to Fully Connected Networks (FCN), Recurrent
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Neural Networks (RNN), XGBoost, and LightGBM
based on their individual performance, with the aim
of minimizing overall forecasting error. By
incorporating both local and external variables into a
unified multivariate framework and enhancing it
through PSO-based optimization, the model achieves
higher predictive accuracy and robustness.

• The validation of the top-performing predictive
model using independent databases from two
different markets in Colombia, distinct from the
original training set. This validation is conducted by
applying the model without adjustments to its
parameters, aiming to assess its generalization
capability and robustness in contexts that differ from
the original training environment.

3. Related Works
The analysis and forecasting of agricultural commodity

prices has attracted a great deal of interest due to the
complexity and volatility of the futures market. In this
context, various model combination strategies have been
proposed to improve forecast performance compared to
individual models.

Several studies have explored the use of hybrid
approaches and decomposition techniques to improve the
forecasting accuracy of non-stationary and non-linear time
series. (Ji et al., 2022) propose a mixed model combining
ARIMA with PLS regression to predict agricultural
commodity prices, achieving more accurate weekly
forecasts by integrating spatial and temporal factors across
markets. Similarly, (Bahri and Vahidnia, 2022) employs a
combination of empirical decomposition techniques
(SEEMD) and neural networks (CNN and LSTM) to
predict complex signals with high accuracy, highlighting
the ability to handle fluctuations in nonstationary data. In
the energy domain, (Bedi and Toshniwal, 2020) use
Variational Mode Decomposition (VMD) together with
LSTM networks to forecast energy demand, outperforming
traditional models by capturing seasonal and historical
patterns in the data.

On the other (Zhang et al., 2020), a new model
selection framework incorporating time series features and
forecast horizons is proposed. Twenty-nine features are
used to represent agricultural product prices, and three
intelligent models are specified as candidate forecasting
models: namely, Artificial Neural Network (ANN), Support
Vector Regression (SVR), and Extreme Learning Machine
(ELM).s. For its part (Suaza et al., 2023), it analyzes how
data acquisition delays impact price prediction systems
when different forecasting algorithms are used. The study
(Chaowalit et al., 2025) employs multivariate time series
and deep learning techniques, such as CNN and LSTM, to
predict the import price of soybean meal in Thailand, a key
input in the animal feed industry. The Bidirectional LSTM
(Bi-LSTM) model proved to be the most efficient, helping
importers plan costs by considering shipping time. In

addition, future improvements are suggested by
incorporating variables such as weather and geopolitical
events to optimize predictions.

Time series forecasting has been studied through
various decomposition approaches and hybrid models.
(Bahri and Vahidnia, 2022) analyzed the effectiveness of
smoothing ensemble empirical mode decomposition
(SEEMD) combined with LSTM and CNN neural
networks, achieving outstanding results in noisy and
nonlinear time series. Similarly, (Li et al., 2023) evaluated
the adaptive Fourier decomposition (AFD) method
compared to EMD and FDM, concluding that AFD offers
greater sensitivity to peaks in financial time series,
enhancing trend detectiona and structural
changeidentification. (Liu et al., 2020) highlighted the
performance of VMD in analyzing mill vibration signals,
demonstrating its ability to mitigate aliasing and boundary
effect issues present in EMD. (Yang and Yang, 2020)
proposed hybrid approaches based on EEMD and neural
networks, showing superior performance by integrating
multiple learning algorithms.

Finally, (Bedi and Toshniwal, 2020) designed a hybrid
model that combines VMD with LSTM networks for
energy demand forecasting, achieving significantly higher
accuracy than traditional models and AI-based techniques.
(Wang et al., 2022) used a hybrid ap approach based on the
artificial bee colony (ABC) algorithm to predict
agricultural futures prices, combining decomposition
techniques (SSA, EMD, VMD) with models such as
ARIMA and neural networks, achieving significant
improvements in accuracy, (Zhang and Tang, 2024)
proposes a novel VMD-SGMD-LSTM model that
combines enhanced quadratic decomposition techniques
with an artificial intelligence framework. Ultimately,
artificial intelligence plays a crucial role in modern
agriculture.(Kundu et al., 2022) propose the MaizeNet
model to detect maize diseases and estimate yield losses
with high accuracy. Meanwhile, Sachithra and (Sachithra
and Subhashini, 2023) highlight how AI promotes
agricultural sustainability by optimizing resources and
reducing environmental impacts. In the data preprocessing
stage, the VMD is applied to decompose the original
futures price data, while the Second Generation Mode
Decomposition (SGMD) is used for further refinement of
the remaining components.

Studies conducted by (Safari et al., 2020) analyze the
performance of the EMD method regarding methods for
decomposing time series into simpler components to
improve prediction accuracy.

In summary, although state-of-the-art models such as
Transformers and hybrid architectures with attention
mechanisms have demonstrated important advances in
agricultural price forecasting in international contexts, their
effectiveness has been validated primarily under conditions
involving long, clean, and multisource time series,
conditions that differ significantly from the realities of the
Colombian agri-food system. Studies such (Zeng et al.,
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2023) and (Guindani et al., 2024b) highlight not only the
potential predictive performance of these models but also
their high computational requirements and the complexity
of fine-tuning, which limits their applicability in data and
resourceconstrained environments. In contrast, the present
study adopts a more robust, interpretable, and adaptable
architecture based on EMD decomposition, decision tree
models, and conventional neural networks aligned with the
structure of the dataset used: weekly time series with
structural noise and strong seasonality, typical of the
Colombian maize market. This methodological choice not
only ensures greater technical efficiency but also provides a
better fit with the operational conditions of the country,
without ruling out the future integration of more complex
models as data ecosystems and technical capacities evolve.

To build upon these findings, this research conducted a
comprehensive review of existing studies on agricultural
price prediction. Table 1 provides a detailed summary,
including crop types, data sources, models employed,
algorithms applied, and evaluation metrics used to assess
model performance.

4. Methodology
The proposed methodological architecture comprising

Empirical Mode Decomposition (EMD), supervised
learning models, and optimization through Particle Swarm
Optimization Cuckoo Search (PSO-CS)was designed to
address the specific challenges of agricultural price
forecasting systems in Colombia. In particular, the maize
market faces structural constraints such as high seasonality,
the influence of exogenous variables, and limitations in
both the availability and quality of historical data (Arbeláez
et al., 2024) EMD was selected for its ability to decompose
nonlinear time series into interpretable components,
thereby reducing noise and enhancing the predictive signal
(Safari et al., 2020). Additionally, models such as
LightGBM, XGBoost, FCN, and RNN were chosen for
their ability to capture complex patterns in multivariate
datasets, while PSO-CS ensures an efficient integration of
these models by dynamically adjusting their weights based
on relative performance. This framework is not merely a
technical reproduction of existing literature but rather a
configuration tailored to the real-world constraints and
needs of the Colombian agricultural sector.

Figure 1 presents the proposed methodological
framework for corn price forecasting. The process is
structured into three main phases: (1) prediction using a
univariate time series, (2) integration of multivariate time
series data, and (3) model validation and Figure 2 presents
the architecture developed for forecasting corn prices in
Colombia, based on the integration of multivariate time
series and Figure 2 shows the forecasting architecture for
corn prices in Colombia, structured in three phases: (1)
univariate prediction using EMD and ML models, (2)
multivariate modeling with CBOT futures as exogenous

input, and (3) optimization of ensemble forecasts using the
PSO-CS metaheuristic to improve accuracy and robustness.

Phase 1, prediction from a univariate series. This first
phase is detailed in the following steps.

Step 1: Data preparation.
In this process, data cleaning is performed to remove

outliers, missing values, and redundant variables. Then, the
transformed data is normalized and structured for use in the
prediction model.

Step 2: Data decomposition.
The data is decomposed into simple and independent

components using EMD decomposition techniques. For
this phase, the database of historical corn prices in
Colombia, generated by the Gran Central de Abastos del
Caribe (GRANABASTOS) detailed in the table 2

Step 3: Individual forecasting.
The components are fed into the individual forecast

models XGBoost, LightGBM, FCN, and RNN, and
individual forecasts are generated.

Step 4: Combination of forecasts.
The PSO-CS weight allocation method is used to

determine the optimal weights of the individual models
with different combination strategies, and then the
individual predictions are weighted to obtain the combined
results for each of the

Step 5: Model Combination
At this stage, neural networks (FCN and RNN) are

integrated with each other, and tree-based models
(XGBoost and LightGBM) are combined among them.

Phase 2: Multivariate Data Integration: Data1-corn and
Data2-corn

Step 1:Verification of correlation and cointegration
between series

The methodology presented in Step is extended by
integrating data on corn futures contract prices from the
CBO. This dataset is structured as a sequence that follows
the same timeline as the original historical corn price series
in Colombia, provided by GRANABASTOS, transforming
it into a multivariate time series model.

Step 2: : Individual Multivariate Predictive Models.
In this step, individual predictions were generated using

the RNN, FCN, XGBoost, and LightGBM models on the
multivariate time series constructed from the integration of
Data1 and Data2. Each model was independently trained
and validated on the multivariate dataset in order to assess
its individual performance before being considered for
combination in later stages of the study.

Step 3:Statistical Significance of the Diebold-Mariano
Test (DM).

In this step, the Diebold-Mariano (DM) test was applied
to evaluate whether the differences in predictive accuracy
between individual models were statistically significant.
The test compared the forecast errors pairwise to determine
if one model consistently outperformed another

Step 4: Combination of Models for Data1-Corn and
Data2-Corn.
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Table 1
Summary of recent studies on crop price forecasting using time series and ML. Comparison of crops, input variables, data
sources, forecasting algorithms, best-performing models, and evaluation metrics across referenced publications.

Ref Year Crop Input
Variables

Type of Source Algorithms Used Best Performing
Algorithm

Evaluation Measure

(Sediyono
et al.,
2025)

2025 Multi-commodity
(maize, rice, wheat)

Price history,
weather,
seasonality,
volatility
indices

Public + satellite data Transformer, LSTM-VAE
+ Attention

Attention-boosted
Transformer +
LSTM-VAE ensemble

RMSE, MAPE,
Directional Accuracy

(Guindani
et al.,
2024a)

2025 Multiple (maize
included)

Time series
data +
economic
indicators

Public databases
(global)

CNN, LSTM, TCN,
XGBoost, hybrid DL
models

Hybrid CNN + TCN
+ LSTM

RMSE, MAE, MAPE,
𝑅2

(Zhang
et al.,
2025)

2025 Avocado Time series
+ exogenous
variables
(climate,
region)

Public datasets
(unspecified)

TCN, MLP, Attention
Mechanism

TCN + MLP +
Attention (hybrid)

MSE, RMSE

(Yoon
et al.,
2025)

2025 Tomato and Apple 24
environmental
Climatological
Variables

Public data (KREI
OASIS)

LSTM (with time delay),
SHAP for explainability

LSTM with time delay Nash-Sutcliffe
Efficiency (NSE),
MAE, RMSE, SHAP
values 𝑅2

(Rana
et al.,
2024)

2024 Spinach Time series
Historical

Historical-
Government Data

Regressive Moving
Average (ARIMA),
Random Forest (RF),
Long-Short-Term Memory
(LSTM)

Long-Short-Term
Memory (LSTM)

MAE, MSE, RMSE,
Squared correlation
coefficient 𝑅2

(Sari
et al.,
2024).

2024 Corn, Sugar, Soybean,
Rice, Oat, Cotton,
Coffee, Cocoa,
Soybean oil, Lumber

Time series
Historical

Historical-
Government Data

Extreme Learning +
Genetic Algorithm, Long
Short-Term, Memory +
Genetic Algorithm +
autoregressive integrated
moving average model

Extreme Learning +
Genetic Algorithm

RMSE, MAPE, MAE

(Jin
and
Xu,
2024)

2024 Corn Time series
Historical

Wholesale market in
China

ARIMA and AR-GARCH,
Artificial Neural Networks
(ANN), Support Vector
Regression (SVR),
and Gaussian Process
Regression (GPR)

Gaussian Process
Regression (GPR)

RMSE, MAE

(Garai
et al.,
2023).

2023 Onion Time series
Historical

Historical-
Government Data

ARIMA-GARCH, ANN-
SVR

ARMA, RF, SVR RMSE, MAE, MAPE

(Mohanty
et al.,
2023)

2023 Corn Time series
Historical

Department of
Agriculture, United
States

ARIMA, Statistical
Regression (SR), Decision
Tree Regressor (DTR),
Random Forest (RF),
K-nearest, neighbor
regressor (KNN) and
kernel ridge(KR)

Decision Tree
Regressor (DTR)

RMSE, MAE

(Purohit
et al.,
2021)

2023 Cotton Time series:
Historical
Prices

Historical-
Government Data

Linear Regression,
Bayesian Linear
Regression, Decision
Trees, Random
Forest(RF)

Decision Trees (DT) MSE, RMSE, MAE,
MAPE

(Banerjee
et al.,
2022)

2022 Soybean, Corn Time series:
Historical
Prices

Daily Price Data—
Chicago Board of
Trade (CBOT)

Artificial bee colony
algorithm (ABC),
ARIMA, SVR, (RNN)-
Gated Recurrent

Artificial Bee Colony
Algorithm (ABC)

RMSE, MAE, MAPE

(Wang
et al.,
2022)

2021 Cardamom Time series
Historical

Historical-
Government Data

Multiple linear regression
(MLR), ARIMA

Multiple linear
regression (MLR)

RMSE, 𝑅2

(Adhikari
et al.,
2021)

2021 Tomato, Onion,
Potato

Time series:
Historical
Prices

Historical
Information-
Government-Report
of Horticultural
Statistics Division

(Additive-ETSSVM,
Additive-ETS-LSTM)-
(Multiplicative-ETS-
ANN, Multiplicative-ETS
SVM, Multiplicative-
ETS-LSTM

Additive-ARIMA-
ANN- SVM
Multiplicativo-ETS

RMSE, MAE, MAPE

(Deepa
et al.,
2023)

2021 Corn Time series:
Historical
Prices

Historical data-
Governmental-Time
orn futures prices,
traded on CBOT.

K-means, k-nearest
neighbor (kNN) algorithm

K-means, k-nearest
neighbor (kNN)
algorithm

RMSE, MAE, MAPE

(Li
et al.,
2021)

2020 Grape Time series
Historical

Historical-
Government Data

Least Squares Support
Vector Machine
(LSSVM), Extreme
Learning Machine (ELM)

Least Squares Support
Vector Machine
(LSSVM), Extreme
Learning Machine
(ELM)

RMSE, MAE,
Improvement Rate
(IR)
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In this step, model combination was carried out using
the PSO-CS algorithm to create hybrid ensembles.
Specifically, the models XGBoost and LGBM were
combined into one ensemble, and FCN and RNN into
another. The goal was to leverage the complementary
strengths of each model, with PSO-CS optimizing the
weight assignment in each ensemble to improve overall
forecasting accuracy.

Step 5: Sensitivity and Stability Analysis of the
Predictive Ensemble.

In this step, a sensitivity and stability analysis of the
predictive ensemble was conducted by evaluating the
model’s behavior under different hyperparameter
configurations of the PSO-CS algorithm. Various settings
were tested to assess the consistency of performance and
the stability of the weight distribution assigned to each base
model. This analysis helps validate the robustness of the
ensemble under diverse optimization scenarios.

Step 6: Uncertainty Quantification and Model
Reliability.

This step assesses the robustness of the model by
estimating the prediction uncertainty through block
bootstrap. It provides a 95% confidence interval around the
ensemble mean, allowing evaluation of the statistical
reliability of the forecasts.

Phase 3: Model Validation: Multivariate Integration
Step 1: Out of Time Validation.
This step evaluates the model’s performance using

entirely new and different data not involved in the training
or validation stages.

Step 2: Model Validation Using Data3-Corn and
Data4-Cor.

In this phase, the best-performing models, both
individual and ensemble, were validated using two new
datasets from different markets: Data3-Corn and
Data4-Corn. No additional parameter tuning was applied,
in order to evaluate the models’ generalization capacity.
The objective was to assess their performance in previously
unseen real-world scenarios.

Step 3 Comparative Analysis with Previous Studies
Using the Same Time Series.

This step consisted of comparing the proposed
ensemble model with previous state-of-the-art approaches
applied to the same CBOT time series. The results reported
by Wang et al. (2022) and Zeng et al. (2023) were used as
reference benchmarks.
4.1. Hypothesis Analysis for Model Selection

The selection of predictive models was based on two
fundamental hypotheses. Hypothesis H1 states that
decision tree algorithms (XGBoost and LightGBM) offer
greater accuracy and stability in agricultural contexts such
as Colombia, where data tend to be noisy, nonlinear, and
temporally limited (Bedi and Toshniwal, 2020). Hypothesis
H2 suggests that although neural networks (FCN and RNN)
are capable of capturing sequential patterns, their
performance is negatively affected in short and highly

seasonal time series when adequate regularization
mechanisms are not applied (Chung and Shin, 2018).

5. Model descriptions
This section describes the models compared in the

experiments.
5.1. Empirical modal decomposition

In this study, Empirical Mode Decomposition (EMD)
was employed as the primary preprocessing technique prior
to predictive modeling. Its selection is supported by a prior
comparative analysis in which various decomposition
methods were evaluated using the same time series of corn
prices, including EMD, Variational Mode Decomposition
(VMD), Singular Spectrum Analysis (SSA), Ensemble
Empirical Mode Decomposition (EEMD), Wavelet
Transform (WT), and a baseline case without
decomposition. The study concluded that EMD and SSA
achieved the best predictive performance when combined
with machine learning models such as LightGBM,
XGBoost, and neural networks. The findings were
published in the article titled Hybridization of Variational
Mode Decomposition and Singular Spectrum Analysis for
Corn Price Forecasting, included in the volume Advances
in Computing and Data Sciences (Springer CCIS series)
(Ojeda-Beltran et al., 2024). Therefore, EMD was selected
for its proven ability to extract nonlinear and nonstationary
components from complex agricultural time series, which
are often affected by structural noise and seasonal
variability.

Nevertheless, EMD also presents important limitations:
high sensitivity to noise, dependence on interpolation
techniques, and the absence of a formal mathematical
foundation, which can compromise the consistency of the
extracted modes. In scenarios with a low signal-to-noise
ratio or when more stable spectral separation is required,
methods such as VMD or WT may offer better
performance. However, these approaches often demand
more complex calibration and tend to be less flexible,
limiting their applicability in settings such as the
Colombian maize market, which is characterized by
irregular signal structures and noisy data.

The EMD first introduced by Huang et al. (1998), is an
adaptive time-frequency signal processing method
designed to decompose nonlinear and nonstationary signals
into a finite set of Intrinsic Mode Functions (IMFs) and a
residual component. Each IMF represents a distinct
frequency characteristic of the original signal and has a
compact Fourier spectrum. The decomposition process,
known as sifting, involves iteratively identifying local
extrema, computing upper and lower envelopes via cubic
spline interpolation, averaging these envelopes, and
subtracting the mean to extract each IMF (Yang and Fan,
2022). Once all IMFs are extracted, the residual captures
the long-term trend:
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Figure 1: Proposed methodological framework for corn price forecasting The process is divided into three phases: (1) prediction
based on a univariate time series, (2) multivariate data integration, and (3) model validation.

𝑋(𝑡) =
𝑁
∑

𝑘=1
𝑐𝑘(𝑡) + 𝑟𝑁 (𝑡) (1)

where 𝑐𝑘(𝑡) denotes the 𝑘-th IMF and 𝑟𝑁 (𝑡) the final
residual.

EMD is widely used for forecasting due to its capacity
to separate stationary and nonstationary components
(Lahmiri, 2017). However, it presents limitations such as
sensitivity to noise, reliance on interpolation methods, and
lack of a formal mathematical foundation (Yang and Chen,
2019). Some studies recommend discarding the first IMF
(𝐼𝑀𝐹1) due to its potential to introduce forecast errors (Yu
et al., 2008), while others suggest training it separately
using deep learning approaches. Alternative formulations
with improved robustness, such as the one proposed by
Park et al. (2011), address these limitations by reducing
sensitivity to stopping criteria and local fluctuations.
5.2. Fully Connected Networks

FCN are neural networks in which each neuron in one
layer is connected to every neuron in the next layer. They
are classic deep learning models primarily used for
classification and regression tasks.

In these networks, each neuron in one layer is
connected to every neuron in the next layer. They are highly
flexible and commonly used for tasks such as classification,
regression, and pattern recognition. The key advantage of
FCN is their ability to capture complex relationships
between input features. However, their main limitation is
the lack of explicit handling of temporal or spatial
relationships within the data. Mathematically, a FCN
operates by calculating a linear combination of input

values, followed by the application of a nonlinear activation
function:

𝑧 = 𝑊 𝑥 + 𝑏, 𝑎 = 𝑓 (𝑧) (2)
Here, 𝑊 is the weight matrix, 𝑏 is the bias vector, 𝑥 is

the input vector, and 𝑓 is the activation function. The
output 𝑎 is obtained by applying 𝑓 to the linear
transformation 𝑧.
5.3. Recurrent Neural Networks

They are designed to process sequential data, such as
time series or text. Unlike FCNs, RNN feature recurrent
connections that enable them to retain information from
previous states, making them particularly well-suited for
tasks where temporal context is essential.

The operation of an RNN is based on iterating through
time, updating a hidden state ℎ𝑡 at each time step:

ℎ𝑡 = 𝑓 (𝑊 𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏) (3)
Here, 𝑥𝑡 is the input at time step 𝑡, ℎ𝑡−1 is the hidden

state from the previous time step, 𝑊 and 𝑈 are weight
matrices, 𝑏 is the bias vector, and 𝑓 is a nonlinear
activation function (e.g., tanh or ReLU).

Variants of RNN, such as Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units (GRU),
include mechanisms to mitigate issues such as vanishing or
exploding gradients, thereby improving the capture of
long-term dependencies.
5.4. XGBoost and LightGBM

XGBoost (Extreme Gradient Boosting) and LightGBM
(Light Gradient Boosting Machine) are two of the most
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Figure 2: Architecture for forecasting corn prices in Colombia using multivariate time series and ensemble learning models. The
figure illustrates the three-phase methodology: (1) univariate prediction using EMD and ML models, (2) integration of CBOT
corn futures data to create a multivariate model, and (3) Ensemble predictions are optimized through a PSO-CS metaheuristic
to enhance accuracy and robustness.

popular and powerful gradient boosting algorithms used in
ML. Both algorithms are designed to optimize predictive
performance while maintaining computational efficiency.
XGBoost employs advanced regularization techniques,
such as L1 and L2, to prevent overfitting and handles
missing data efficiently. It is particularly well-suited for
structured/tabular data and often achieve state-of-the-art
results in competitions. On the other hand, LightGBM is
optimized for speed and scalability, using techniques such
as histogram-based learning and leaf-wise tree growth to
reduce memory usage and computational time. LightGBM
is especially effective for large datasets and
high-dimensional feature spaces. Both algorithms support
parallel and distributed computing, making them highly
efficient for large-scale ML tasks. While XGBoost focuses
on robustness and accuracy, LightGBM prioritizes speed
and scalability, making the choice between them dependent
on the specific requirements of the problem.

The objective function for XGBoost is defined as:

Obj =
𝑛
∑

𝑖=1
𝐿
(

𝑦𝑖, 𝑦̂𝑖
)

+
𝐾
∑

𝑘=1
Ω(𝑓𝑘) (4)

Here, 𝐿(𝑦𝑖, 𝑦̂𝑖) is the loss function that measures the
difference between the predicted value 𝑦̂𝑖 and the true value
𝑦𝑖. The term Ω(𝑓𝑘) represents the regularization function
applied to each of the 𝐾 trees 𝑓𝑘, which controls model
complexity.

The regularization term Ω(𝑓𝑘) is expressed as:

Ω(𝑓𝑘) = 𝛾𝑇 + 1
2
𝜆

𝑇
∑

𝑗=1
𝑤2

𝑗 (5)

Here, Ω(𝑓𝑘) is the regularization term used in the
XGBoost objective function. The first term 𝛾𝑇 penalizes
the number of leaves 𝑇 in the tree, while the second term
1
2𝜆

∑𝑇
𝑗=1𝑤

2
𝑗 penalizes large leaf weights 𝑤𝑗 using the

regularization parameter 𝜆.
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The objective function for LightGBM is similarly
defined as:

Obj =
𝑛
∑

𝑖=1
𝐿(𝑦𝑖, 𝑦̂𝑖) + Ω(𝑓𝑘) (6)

Here, 𝐿(𝑦𝑖, 𝑦̂𝑖) is the loss function that measures the
prediction error for each observation, and Ω(𝑓𝑘) is the
regularization term that controls the complexity of the
model.

LightGBM uses a leaf-wise growth strategy, selecting
the leaf that maximizes the reduction in loss. The loss
reduction is calculated as:

Δ𝐿 = 𝐺2

𝐻 + 𝜆
(7)

Here, 𝐺 is the sum of the first-order gradients
(residuals) of the loss function for the leaf, 𝐻 is the sum of
the second-order gradients (Hessians), and 𝜆 is the
regularization parameter. The expression Δ𝐿 quantifies the
gain from splitting a node.
5.5. Dataset and material

This section presents the data collection used to train
the prediction models, analyzes the relationships between
the variables and describes the subset selected for the
experiments. Additionally, a descriptive analysis of the
input data is provided. The selected wholesale corn price
data set in Colombia corresponds to the GRANABASTOS
market located in the department of Atlántico (data1-corn)
data was obtained from the Agricultural Sector Supply and
Price Information System (SIPSA) of the National
Administrative Department of Statistics in Colombia
(DANE) DANE - SIPSA API The prices of shelled corn are
reported in COP per kilogram (COP/kg).

data1-corn was created on Friday, September 30, 2024,
and contains weekly yellow corn price data from January 1,
2014, through September 25, 2024. Table 2 contains the
description of the data fields, and Table 3 shows the
summary statistics.

The set Data2-corn corresponds to the prices of corn
futures contracts on the Chicago Board of Trade (CBOT)
FUTURES-CONTRACTS - API and includes the fields
Date, Last Price, Opening Price, High, Low Price, and
Volume % change. On the Investing.com website, corn
prices in the United States are quoted in US dollars (USD)
per bushel. A bushel of corn is approximately equivalent to
25.4 kilograms. Futures markets are financial platforms
where standardized contracts are traded to buy or sell an
underlying asset, such as agricultural commodities, oil,
metals, etc., at a future date at a pre-agreed price.
Agricultural futures contracts, including corn, have become
a key financial asset to mitigate price risk in volatile
markets, offering opportunities for portfolio diversification
and hedging against extreme price fluctuations (Mensi
et al., 2025). Table 4 shows the description of the

Table 2
Variables in Data1-corn (Granabastos market). Daily records
of yellow maize prices used in univariate modeling.

Variable Description
Date Observation day
Source Observed market (Granabastos)
Item Yellow cracked maize
Average Price Weighted average of observed

prices, considering traded
volumes per price range.

Minimum Price Lowest price recorded for the
product during the day.

Maximum Price Highest price recorded for the
product during the day.

Table 3
Summary statistics of average prices in Data1-corn.
Descriptive values in COP/kg from Granabastos market
(2014–2024).

Parameter Value
Count 554
Mean 1746.01
Std 484.70
Min 848
25% 1448
50% 1543
75% 2162.5
Max 2850

Table 4
Variables in Data2-corn (CBOT futures). Daily corn futures
data used for multivariate modeling.

Variable Description
Date Day of the record

(DD/MM/YYYY)
Last Closing price of the day
Open Opening price
High Highest price of the day
Low Lowest price of the day
Volume Total traded volume
% Change Price variation from previous day

Data2-corn fields, and Table 5 shows the summary
statistics.

The date field is common to both data sets, Data1-corn
and Data2-corn, which allows integration to the models for
their operation from multivariate time series. Data1-corn
and Data2-corn were created on Friday, September 30,
2024, and contain data from January 1, 2014, through
September 25, 2024.

The datasets Data3-corn and Data4-corn are explicitly
used for model validation. Data3-corn corresponds to the
wholesale prices of corn in the market of the department of
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Table 5
Summary statistics of Data2-corn (CBOT futures).
Descriptive values in USD/bushel from 2014 to 2024.

Parameter Value
Count 3787
Mean 484.88
Std 138.65
Min 301.5
25% 369.25
50% 427.75
75% 608
Max 838.75

Monteria, a Colombian region. Data4-corn corresponds to
the wholesale prices of yellow corn in the Barranquillita
market, which belongs to the department of Atlántico
Colombian Caribbean region. It contains weekly data on
the price of yellow corn from January 1, 2014, to
September 25, 2024.
5.6. Input and Output Structure of the Models

For the Data1-corn dataset, which corresponds to local
maize prices in Colombia, the input structure was defined
using lagged variables generated from the univariate time
series. Specifically, seven past values of the maize price
(labeled as “retraso-1” to “retraso-7”) were used,
representing weeks t-1 to t-7, respectively. These values
form the feature vector for each training instance. The
model output corresponds to the "PROMEDIO" column,
which represents the maize price at week t. This
transformation of the univariate series into a supervised
learning format enables the model to capture relevant
temporal dependencies for weekly price forecasting.

For the Data1-corn and Data2-corn, which integrates
both local and international information, a multivariate
input structure was employed. This structure consisted of
seven lagged values of the Colombian maize price (labeled
as “retraso-1” to “retraso-7”) and an additional variable
named “Futuro,” which represents an external component
associated with the international maize price, sourced from
the Chicago Board of Trade (CBOT) futures market. This
combination allows the model to capture not only internal
temporal dynamics but also the influence of external
market factors. The model output remains the
“PROMEDIO” variable, which corresponds to the maize
price in week t. This configuration enhances the model’s
predictive capacity by integrating multiple relevant sources
of information for the local market.
5.7. Evaluation measures

The performance metrics used for model evaluation are
MAE, RMSE, MAPE, and R². Each metric provides a
unique perspective on model behaviour, allowing analysis
of absolute and percentage errors.

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| (8)

Here, 𝑦𝑖 denotes the actual value, 𝑦̂𝑖 is the predicted
value, and 𝑛 is the total number of observations. The mean
absolute error (MAE) measures the average magnitude of
the errors in a set of predictions, without considering their
direction.

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (9)

Here, 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value,
and 𝑛 is the number of observations. The root mean squared
error (RMSE) measures the square root of the average
squared differences between predicted and actual values,
giving higher weight to larger errors.

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|
𝑦𝑖

(10)

Here, 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value,
and 𝑛 is the number of observations. The mean absolute
percentage error (MAPE) expresses the prediction error as
a percentage of the actual value, making it useful for
comparing errors across different scales.

𝑅2 = 1 − SSE
SST

(11)

Here, SSE is the sum of squared errors, and SST is the
total sum of squares. The coefficient of determination 𝑅2

measures the proportion of the variance in the dependent
variable that is predictable from the independent variables.

6. Results and discussion
This section presents the results obtained from the

application of the proposed methodology.
6.1. Forecast from Data1-corn

The first subsection of the results addresses Phase 1
prediction from a univariate time series called Data1-Corn.
The analysis has four main steps.

Step 1. Data preparation
Before model training, IMF1, IMF2, and the residual

were normalized using the MinMaxScaler method to scale
values between -1 and 1, improving convergence in neural
networks. Lag variables (up to 7 time steps) were created to
capture temporal dependencies. The dataset was split
chronologically into training (80%), validation (10%), and
testing (10%) sets. For XGBoost and LightGBM models, a
time series cross validation strategy using TimeSeriesSplit
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Figure 3: EMD decomposition of historical corn prices from Granabastos. The series is split into two intrinsic mode functions
(IMF1, IMF2) and a residual, representing short-, medium-, and long-term components.

with three folds was applied to ensure robust evaluation and
prevent data leakage.

Step 2: Data decomposition
Decomposition experiments are performed using the

EMD technique, applied to Data1-corn. Figure 3 shows the
original corn price series from Data1-corn, decomposed
using the Empirical Mode Decomposition (EMD)
technique into two intrinsic mode functions (IMFs) and a
residual. These components are stored under the fields
IMF1, IMF2, and Residual, respectively. IMF1 represents
high-frequency fluctuations associated with short-term
noise or random events, characterized by high volatility and
no clear pattern. IMF2 captures intermediate-frequency
variations, possibly linked to recurring seasonal cycles, and
displays a more ordered structure. Finally, the Residual
field reflects a long-term trend marked by sustained growth,
potentially indicating structural evolution in the underlying
data.

Step 3: Individual Forecasting
After applying the Empirical Mode Decomposition

(EMD) technique to the original time series, three
components were obtained: two intrinsic mode functions
(IMF1 and IMF2) and a residual. Each of these components
was modeled independently, considering their specific
behavior and level of complexity. Prior to training, the data
were normalized to a range between -1 and 1 using the
MinMaxScaler. Lag variables were incorporated up to 7
steps, and the dataset was split into training (80%),
validation (10%), and test (10%) subsets.

For the neural network models, FCN and RNN were
implemented. FCN included hidden layers with tanh
activation, a linear output layer, and was optimized using
the RMSprop algorithm. RNN was constructed with LSTM
layers, whose architecture and hyperparameters were
optimized using the Optuna library. Both models were
trained separately for each IMF and the residual.
Meanwhile, XGBoost and LightGBM were tuned through
hyperparameter search, adjusting values such as learning
rate, maximum depth, number of leaves (num_leaves), and
number of estimators, with time series cross-validation.

The results showed that tree-based models (XGBoost
and LightGBM) consistently outperformed the neural
networks across all components. In IMF2, LightGBM

achieved an MSE of 0.0763 and XGBoost 0.0891, while
FCN had a considerably higher MSE (0.2850). For the
residual component, the tree models again demonstrated
superior ability to capture long-term trends, with XGBoost
reaching an MSE of 0.0355 and LightGBM 0.0479. Table 6
reports the results of the metrics applied to the MSE values
for each EMD component across individual models,
including the evaluation of IMF1, IMF2, and the residual.

Step 4: Combination of forecasts
For the four models analyzed (XGBoost, FCN, RNN,

and LightGBM), the assembly was performed by
combining the predictions of the components derived from
the EMD: IMFs 1, IMFs 2 and residual. Subsequently, the
predictions generated by the trained models for each mode
were combined by an additive ensemble, in which the
individual predictions of IMFs 1, IMFs 2 and residual were
summed to reconstruct the original time series.

The analysis of the metrics shows that in the validation
set, the XGBoost model shows that the root mean square
error (RMSE) is 69.22 COP and a mean absolute error
(MAE) of 54.70 COP, indicating considerable accuracy in
the predictions. The mean absolute percentage error
(MAPE) is 2.52%, and the correlation coefficient (R)
reaches 0.87, suggesting a strong relationship between
predictions and actual values.

On the other hand, the LightGBM (LGBM) model also
exhibits a solid performance, with an RMSE of 66.23
weights and an MAE of 51.92 weights. Its MAPE is 2.33%,
and the R is 0.91, indicating an even stronger correlation
than XGBoost.

In contrast, FCN and RNN underperform in this set,
with RMSE of 213.65 and 188.11 weights, respectively,
and MAE of 172.04 and 134.29 COP. Both models have
higher MAPEs, 7.92% for FCN and 6.05% for RNN, and
negative correlation coefficients, suggesting low accuracy
and an inverse relationship between predictions and actual
values.

On the test set, XGBoost significantly improves its
performance, recording a root mean square error (RMSE)
of 26.84 (COP) and a mean absolute error (MAE) of 20.51.
The mean absolute percentage error (MAPE) decreases to
0.78%, and the correlation coefficient (R) increases to 0.94,
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Table 6
MSE values for each EMD component across individual models. Evaluation of IMF1, IMF2, and the residual using XGBoost,
FCN, RNN, and LGBM.

IMFs Metric XGBoost FCN RNN LGBM
IMF 1 MSE 0.2827 0.1016 0.0832 0.2776
IMF 2 MSE 0.0891 0.2850 0.3087 0.0763
Residual MSE 0.0355 0.1448 0.2163 0.0479

Table 7
Evaluation metrics of individual and ensemble models on
Data1-corn. Results for validation and test sets.

Model Metric Validation Test
XGBoost RMSE 69,2236 26,8398

MAE 54,7005 20,5127
MAPE 2,52% 0,78%
𝑅2 0,8700 0,94

FCN RMSE 213,6510 156,2484
MAE 172,0380 135,8828
MAPE 7,92% 5,44%
𝑅2 -0,2720 -3,1400

RNN RMSE 180,1100 234,6564
MAE 134,2850 190,2517
MAPE 6,05% 7,89%
𝑅2 -0,6700 -12,75

LGBM RMSE 66,2290 36,9358
MAE 51,9157 29,0004
MAPE 2,33% 1,09%
𝑅2 0,9100 0,8900

(XGB+LGBM) MSE 718,29 3,876.51
RMSE 26,8 62,26
MAE 20,33 45,96
MAPE 0,78% 2,10%

(FCN+RNN) MSE 11,285.97 4,374.96
RMSE 106,24 66,14
MAE 90,9 51,43
MAPE 3,54% 2,35%

indicating excellent accuracy and a robust correlation
between predictions and actual values.

LGBM also shows good performance in this set, with
an RMSE of 36.94 COP and an MAE of 29.00 COP. Its
MAPE is 1.09%, and the R is 0.89, maintaining a strong
correlation.

FCN and RNN continue to perform poorly, with RMSE
of 156.25 and 234.66 COP, respectively, and MAE of
135.88 COP and 190.25 COP. The MAPEs are 5.44% for
FCN and 7.89% for RNN, with negative correlation
coefficients, indicating a persistent low accuracy and
inverse relationship in predictions.

Table 7 details the results of the evaluation metrics of
the XGBoost, LightGBM , FCN AND RNN after assembly.
These results allow us to compare their performance and
efficiency, highlighting their ability to make accurate
predictions after the process of assembling the modes and
the residual. Figure 4 illustrate the test window and
predictions for the RNN, LightGBM, and FCN models on
the Data1-corn dataset. The red line represents the actual
values, while the green line shows the model predictions.

Step 5: Model Combination
Model assembly was performed using the PSO-CS

algorithm (Particle Swarm Optimization Cuckoo Search),
combining the predictions of the RNN and FCN models by
optimizing weights to minimize the mean square error
(MSE) in the validation data. The process began with
loading the predictions generated by each model for the
validation and test sets. Subsequently, an objective function
was defined based on the MSE, where the combined
predictions were calculated as a weighted sum of the
individual model predictions, with weights adjusted by the
PSO-CS algorithm.

The PSO-CS algorithm began with the initialization of
a population of particles, each representing combinations
of normalized weights. During the process, the particles
updated their positions and velocities using the
best-identified local and global solutions. In addition, the
global search component based on Lévy flights (proprietary
to Cuckoo Search) introduced random variations to prevent
the algorithm from becoming trapped in local minima.

After 20,000 iterations, the optimal weights were
determined: 53.88% for the RNN and 46.12% for the FCN,
reflecting their relative contribution to the assembly.

The final predictions were calculated as a weighted
combination of the model outputs; the results of the
performance metrics in the validation set are as follows: the
mean squared error (MSE) is 11,285.97, indicating a
considerable mean squared difference between the
predictions and the actual values. The root mean squared
error (RMSE) has a value of 106.24, which shows that the
average error in the same units as the original data is
significant. The mean absolute error (MAE) is 90.9
weights, showing that, on average, the model predictions
deviate from 90.9 weights from the true values. The mean
absolute percentage error (MAPE) is calculated as 3.54%,
indicating that the model, on average, has a low relative
error, which is acceptable in percentage terms.

In the test set, the model improves markedly, showing a
mean squared error (MSE) of 4,374.96, which represents a
significant decrease in the mean squared differences. The
root mean squared error (RMSE) is reduced to 66.14 COP,
suggesting improved prediction accuracy. The mean
absolute error (MAE) is also lower, with a value of 51.43
COP, indicating that the predictions are closer to the actual
values. Finally, the mean absolute percentage error
(MAPE) is 2.35%, reflecting a very solid and accurate
performance in relative terms.
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(a) XGBoost on Data1-corn

(b) RNN on Data1-corn

(c) LightGBM on Data1-corn

(d) FCN on Data1-corn

Figure 4: Individual model forecasts using Data1-corn. Individual forecasts using Data1-corn by XGBoost, LGBM, FCN, and
RNN, based on the ‘PROMEDIO‘ series. Each model predicts the EMD-derived components ‘IMF1‘, ‘IMF2‘, and ‘Residual‘, and
the final forecast is obtained by summing their predictions.

Model assembly using XGBoost and LightGBM,
optimizing the weights assigned to each using the PSO-CS
algorithm. In this case, the PSO-CS algorithm was
responsible for optimizing the weights for the XGBoost and
LGBM predictions, assigning them optimal values of
53.88% for XGBoost and 46.12% for LGBM. The result is
a weighted combination of the predictions of both models.

The PSO-CS algorithm combines the global
optimization features of Particle Swarm Optimization
(PSO) with the exploratory capability of Cuckoo Search
(CS). PSO initialized a population of particles, each
representing combinations of normalized weights, and

updated their positions and velocities using the
best-identified local and global solutions. Additionally, CS
introduced Lévy flights to generate random variations in
the positions, preventing the algorithm from being trapped
in local minima.

After 20,000 iterations, the optimal weights were
identified: 53.88% for XGBoost and 46.12% for
LightGBM, reflecting the higher contribution of XGBoost
to the final performance.

In the validation set, the mean squared error (MSE) is
718.29, indicating that, on average, the predictions differ
from the actual values by approximately 26.8 COP based
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(a) XGBoost + LightGBM on Data1-corn

(b) FCN + RNN on Data1-corn

Figure 5: Ensemble forecasts using Data1-corn. Results from combining tree-based models and neural networks with PSO-CS
optimization.

on the root mean squared error (RMSE). The mean
absolute error (MAE) is 20.33 COP, reflecting a minimal
average deviation between predictions and actual values. In
addition, the mean absolute percentage error (MAPE) is
0.78%, meaning that the model predictions have a very low
percentage deviation from the actual values. In the test set,
the model maintains solid performance, with an MSE of
3,876.51 and an RMSE of 62.26 COP, indicating a
somewhat higher but still acceptable average deviation. The
MAE is 45.96 COP, and the MAPE stands at 2.1%,
demonstrating that, although there is a slight increase in
errors when applying the model to unseen data, accuracy
remains high.

These results are presented in Table 7 and allow us to
compare their performance and efficiency, highlighting
their ability to make accurate predictions after the
combination process.

The figure 5 shows the prediction results generated by
the ensemble models applied to the Data1-corn dataset.
The red lines represent the actual values from the test set,
while the green lines indicate the predictions generated by
the combined models.
6.2. Forecast from Data1-corn and Data2-corn

This section reports the results related to the integration
of the Data1-corn and Data2-corn series.

Step 1: Verification of correlation and cointegration
between series

An analysis of correlation and cointegration was
conducted between the time series Data1-corn and
Data2-corn. To ensure comparability, both series were
converted to Colombian pesos (COP): Data2-corn,
originally denominated in U.S. dollars, was converted using
the historical exchange rate corresponding to each record’s

date. The series were then temporally aligned and
standardized to the same unit of measurement (kilograms).

The Augmented Dickey-Fuller (ADF) stationarity test
indicated that both series were non-stationary in their
original form. Data1-corn showed a p-value of 0.4419, and
Data2-corn a p-value of 0.5506. After first-order
differencing, the p-values dropped to 0.0000 and
0.00000011 respectively, confirming stationarity and
enabling their use in predictive analysis.

The Pearson correlation coefficient between Data1-corn
and Data2-corn was 0.8338, with a p-value of 9.93 × 10−14,
indicating a strong and statistically significant positive
relationship. Additionally, the Engle-Granger cointegration
test revealed a long-term equilibrium relationship between
the series, with an ADF statistic of -3.6281 and a p-value of
0.0052, leading to the rejection of the null hypothesis of no
cointegration.

The Spearman rank correlation was 0.7335, with a
p-value of 8.53 × 10−93, also indicating a strong and
statistically significant positive relationship in terms of
order that is, both series tend to follow a similar ranking
pattern regardless of their exact values.

These results support the use of futures contract prices
as a valid predictive input for analyzing local corn prices in
market contexts such as GRANABASTOS.

The figure 6 presents the results of the stationarity
analysis for the Data2-corn and Data1-corn datasets,
respectively. It displays the differenced time series along
with their corresponding autocorrelation (ACF) and partial
autocorrelation (PACF) plots. These visual tools are useful
for identifying temporal dependencies and confirming
stationarity before model implementation.

Step 2: Individual Multivariate Predictive Models
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(a) ACF and differencing – Data2-Corn

(b) ACF and differencing – Data1-corn

Figure 6: Stationarity analysis of time series using ACF and differencing. Visual assessment of autocorrelation and differentiation
applied to Data1-Corn and Data2-Corn for the ADF test.

The results presented in Table 9 reveal clear differences
in the performance of predictive models when
incorporating the Data1-corn and Data2-corn series.
Among the four evaluated models, XGBoost and
LGBM—both based on decision trees—demonstrated
significantly superior performance compared to the neural
networks FCN and RNN.

The XGBoost model produced outstanding metrics: an
RMSE of 22.19 COP, MAE of 16.76 COP, and MAPE of
just 0.64% during the validation phase, with an 𝑅2 of 0.96.
In the testing phase, the model maintained strong
generalization capabilities, achieving an RMSE of 60.82
COP, MAE of 47.11 COP, MAPE of 2.15%, and an 𝑅2 of
0.90. Similarly, the LGBM model exhibited robust
performance, with an RMSE of 28.43 COP and MAE of
23.25 COP during validation, and a MAPE of only 0.89%.
In the testing phase, it continued to perform well with an
RMSE of 60.96 COP, MAE of 45.68 COP, MAPE of
2.05%, and an 𝑅2 of 0.90.

In contrast, the neural networks displayed limited
predictive capability. The FCN model yielded an RMSE of
554.82 COP and MAE of 549.4 COP during validation,
with a MAPE of 26.43% and a negative 𝑅2 of -75.9,
indicating a poor model fit. These metrics worsened during

testing, with an RMSE of 743.66 COP, MAE of 698.29
COP, MAPE of 53.5%, and an 𝑅2 of -62.4. Similarly, the
RNN model showed an RMSE of 518.46 COP and MAE of
508.02 COP in validation, with a MAPE of 23.99% and an
𝑅2 of -99.3. In testing, the RMSE increased to 598.27 COP,
MAE to 531.34 COP, MAPE to 31.74%, and 𝑅2 improved
slightly but remained negative at -3.74.

The poor performance of the FCN and RNN models
(MAPE = 53.5%, negative 𝑅2) is attributed to structural
limitations inherent to neural networks when applied to
short, seasonal, and noisy time series. In the case of the
RNN, the potential vanishing gradient problem hindered
the model’s ability to capture temporal dependencies,
particularly with limited sequence lengths (Chung and
Shin, 2018). Meanwhile, the FCN model, which does not
explicitly model the temporal dimension, exhibited a strong
tendency to overfit, exacerbated by the scarcity of weekly
data and the inherent variability of the Colombian
agricultural market.

This diagnosis is reinforced by visual evidence
observed in the validation and test plots, where both
models exhibit a clear overfitting pattern. The RNN curve,
in particular, displays a more pronounced divergence from
the validation curve, reflecting its difficulty in maintaining
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Table 8
Evaluation metrics of models using combined Data1-corn and
Data2-corn. Results on validation and test sets.

Model Metric Validation Test
XGBoost RMSE 22.19 60.82

MAE 16.76 47.11
MAPE 0.64% 2.15%
𝑅2 0.96 0.9

FCN RMSE 554.82 743.66
MAE 549.4 698.29
MAPE 26.43% 53.5%
𝑅2 -75,9 -2,74

RNN RMSE 518.46 598.27
MAE 508.02 531.34
MAPE 23.99% 31.74%
𝑅2 -99,3 -3,74

LGBM RMSE 28.43 60.96
MAE 23.25 45.68
MAPE 0.89% 2.05%
𝑅2 0.94 0.9

stability outside the training environment. These
observations support the conclusion that, under these data
conditions, the FCN and RNN architectures exhibit limited
generalization capacity, particularly in highly seasonal
agricultural contexts.

These results may be explained by the greater capacity
of tree-based models to adapt to complex nonlinear
structures, handle noise, and detect hierarchical
relationships among variables. In contrast, neural networks
require more stringent conditions for successful training,
including carefully tuned architectures, larger amounts of
data, and more exhaustive preprocessing. The findings of
these results are summarized in Table 8 presents the results
of the metrics applied to the individual forecasts and Figure
7 shows the prediction results generated by the XGBoost,
RNN, FCN, and LightGBM models applied to the
Data1-corn and Data2-corn datasets. In each subfigure, the
red line represents the actual values from the test set, while
the green line indicates the predictions made by each
model. This visual comparison allows for an evaluation of
each model’s performance in capturing the trend of the real
data.

Step 3:Statistical Significance of the Diebold-Mariano
Test (DM)

To assess whether the differences in predictive accuracy
among the individual models were statistically significant,
the Diebold-Mariano (DM) test was employed. This
procedure involved calculating the squared errors of each
model and performing pairwise comparisons to evaluate
the significance of the error differentials. The results
indicated no significant difference between XGBoost and
LGBM, suggesting that these tree-based models exhibit
statistically comparable performance.

In contrast, significant differences emerged when
comparing the tree-based models to the neural networks,
with the fully connected network (FCN) achieving the best
predictive results, followed by the recurrent neural network
(RNN). These findings support the progression toward a

Table 9
Statistical significance of the Diebold-Mariano (DM) test
applied to individual predictive models using Data1-corn and
Data2-corn

Comparison DM
Statistic

P-value Statistical
Decision
(𝛼 = 0.05)

XGBoost vs
LGBM

0.44 0.659 Fail to reject 𝐻0

XGBoost vs
RNN

-5.38 0.0000016 Reject 𝐻0

XGBoost vs
FCN

-4.83 0.0000112 Reject 𝐻0

LGBM vs
RNN

-5.53 0.0000009 Reject 𝐻0

LGBM vs
FCN

-4.85 0.0000104 Reject 𝐻0

FCN vs RNN 2.69 0.0096 Reject 𝐻0

model integration phase, utilizing optimization strategies
such as the Particle Swarm Optimization (PSO) ensemble
to combine the strengths of both model families and
enhance forecasting accuracy. The table 9 presents the
results obtained.

Step 4: Combination of Models for Data1-Corn and
Data2-Corn

The results presented in Table 10 demonstrate that the
PSO-CS ensemble (XGBoost + LGBM) achieved the best
predictive performance, with a MAPE of 2.06%,
outperforming both the individual models and the neural
network ensemble (FCN + RNN, MAPE = 30.74%). This
performance gap can be explained by several
methodological factors and characteristics of the data.

First, XGBoost and LightGBM are gradient-boosted
decision tree algorithms well-suited for modeling tabular,
multivariate data. Their capacity to handle nonlinear
interactions, noisy features, and collinearity makes them
particularly robust in scenarios where data variability is
high—such as in maize pricing, which is influenced by
both national and international market dynamics (e.g.,
CBOT futures). These models offer enhanced
generalization even in moderately sized datasets.

In contrast, the weaker performance of the neural
network ensemble (FCN + RNN) is likely due to the
limited weekly data volume, high seasonality in the
agricultural market, and the sensitivity of neural networks
to noise. Although RNNs are designed to capture temporal
dependencies, their effectiveness diminishes when the
sequence length is short and the signal-to-noise ratio is low.
Moreover, neural networks tend to emphasize internal
patterns within the target series, while tree-based models
such as XGBoost and LGBM are better able to leverage
exogenous variables like CBOT prices, which are essential
in the proposed multivariate configuration.Figure 8.
presents the prediction results generated by ensemble
models applied to the Data1-corn and Data2-corn datasets.
The red line represents the actual values from the test set,
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(a) XGBoost on Data1-corn and Data2-corn

(b) RNN on Data1-corn and Data2-corn

(c) FCN on Data1-corn and Data2-corn

(d) LightGBM on Data1-corn and Data2-corn

Figure 7: Forecasts using multivariate models on corn data. Predictions from four ML models applied to the integrated Data1-corn
and Data2-corn series.

while the green line indicates the predictions made by the
combined models.

The results obtained in this phase indicate that the
PSO-CS ensemble model (XGBoost + LGBM) achieve
superior forecasting performance, reaching a MAPE of
2.19%. This model outperforms both the individual learners
and the neural network-based ensemble (RNN + FCN).
Such improvement is attributed to the synergy between
methodological robustness and the intrinsic characteristics
of the combined datasets used in the modeling process.

First, XGBoost and LightGBM are supervised learning
algorithms based on gradient-boosted decision trees,

known for their effectiveness in predicting tabular data and
their ability to handle non-linear relationships, noisy
variables, and multicollinearity. In the context of corn
pricing, which involves highly volatile local and
international factors (such as CBOT prices), these models
offer greater robustness and generalization, even when
working with multivariate data structures.

On the other hand, the lower performance of the neural
network ensemble (RNN + FCN), which recorded a MAPE
of 30.74%, may be explained by the high sensitivity of
these architectures to noise, as well as their dependence on
large volumes of training data to effectively learn complex
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(a) FCN + RNN on Data1-corn and Data2-corn

(b) XGBoost + LightGBM on Data1-corn and Data2-corn

Figure 8: Ensemble models using multivariate time series. Forecast results from the combination of neural and tree-based models
on integrated corn price data.

Table 10
Performance of PSO-CS ensemble using Data1-corn and
Data2-corn. Evaluation metrics for the combined model
(XGBoost + LGBM) optimized via PSO-CS.

Model Metric Validation Test
(XGBoost+LGBM) RMSE 21.94 58.32

MAE 16.71 45.44
MAPE 0.64% 2.06%
𝑅2 0.96 0.91

(FCN+RNN) RMSE 339.69 628.61
MAE 324.74 540.55
MAPE 14.11% 30.74%
𝑅2 -40,53 -0,7

temporal patterns. In this case, the limited length of the
weekly time series, combined with the seasonal variability
inherent to the agricultural market, constrained the RNN’s
ability to accurately capture sequential dependencies.

Additionally, neural networks tend to prioritize internal
patterns within the target series, whereas tree-based models
like XGBoost and LGBM more efficiently integrate
exogenous signals from international markets. This results
in a better exploitation of CBOT future prices in the
multivariate model.

The superiority of the proposed ensemble is further
supported by the sensitivity analysis, which showed a
balanced weight distribution and consistent performance
across different configurations of the PSO-CS
hyperparameters, indicating high model stability and
generalization capacity.

Furthermore, the results of the Diebold-Mariano
statistical test confirmed that the differences in prediction
errors between the XGBoost + LGBM ensemble and the
neural network ensemble (recurrent and dense) are

statistically significant (𝑝 < 0.05). This provides strong
evidence supporting the superiority of the proposed
approach in terms of predictive accuracy and statistical
robustness.

Although the sensitivity to noise and boundary effects
discussed in Subsection 5.1 are recognized as theoretical
limitations of the EMD method, their practical impact in
this study was minimal. This is supported by the error
metrics obtained from the XGBoost and LightGBM
models, which achieved MAPE values below 1% during
validation (0.64% and 0.89%, respectively) and around 2%
in the test phase (2.15% and 2.05%). Furthermore, the
forecast curves remained stable even at the boundaries of
the series, where edge effects typically manifest more
strongly. These findings suggest that, although boundary
effects and noise sensitivity are methodologically relevant,
their influence did not compromise the predictive capacity
or generalization ability of the model in the multivariate
integration setting.

Step 5: Sensitivity and Stability Analysis of the
Predictive Ensemble

The table 12 presents the results of the sensitivity
analysis of the PSO-CS algorithm was conducted, applied
to the ensemble of recurrent neural networks (RNN +
FCN) and gradient boosting models (XGBoost + LGBM),
both trained with the multivariate time series Datos1_Corn
and Datos2_Corn. The RNN + FCN ensemble
demonstrated superior accuracy in maize price forecasting,
achieving significantly lower error metrics: MSE ranged
from 70,662 to 99,884 COP2, MAE between 189 and 234
COP, and MAPE between 7.97% and 9.93%. These results
indicate a strong fitting capacity despite the complexity of
the data. Although the coefficient of determination (R2)
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Table 11
Hyperparameter settings for models applied to Data1-corn and Data2-corn. Configuration used during training and optimization
of individual learning algorithms.

Model Type Configuration
FCN Fully Connected Neural Network Sequential:

Layer 1: Dense(8, activation=’tanh’)
Layer 2: Dense(9, activation=’tanh’)
Layer 3: Dense(52, ’tanh’)
Layer 4: Dense(25, ’tanh’)
Salida: Dense(1, linear)
Optimizador: RMSprop
Loss: MSE

RNN Recurrent Neural Network (LSTM) Sequential:
Layer 1: LSTM(8)
Layer 2: LSTM(25)
Layer 3: LSTM(57)
Output layer: Dense(1)
Learning rate: 0.0002
Optimizador: Adam o RMSprop
EarlyStopping used

XGBoost Tree-based model XGBRegressor con hiperparámetros:
n_estimators=1000
early_stopping_rounds=50
learning_rate ∈ {0.01, 0.1, 0.2}
max_depth ∈ {2–8}
subsample ∈ {0.8, 0.9, 1.0}

LightGBM Tree-based model LGBMRegressor:
n_estimators = 1000
num_leaves ∈ {600–1000}
max_depth ∈ {8–1000}
learning_rate = 0.01
Histogram-based tree learner used

PSO-CS (RNN+FCN) Ensemble metaheuristic N = 50, T = 20000
w_max = 0.99, w_min = 0.1
c1 = 2.0, c2 = 2.0
pa = 0.25, 𝛼 = 0.01
assigned weights ∼ w1 = 0.46–0.60
/ w2 = 0.40–0.54

PSO-CS
(XGBoost+LGBM)

Ensemble metaheuristic N = 50, T = 20000
w_max = 0.99
w_min = 0.1, c1 = 2.0, c2 = 2.0
pa = 0.25, 𝛼 = 0.01
assigned weights ∼ w1 = 0.48–0.55
/ w2 = 0.45–0.52

was negative (from -0.67 to -1.36), the model exhibited
behavior that reflects alignment with the temporal
dynamics of the series. The PSO-CS algorithm assigned
balanced weights to the individual models, ranging from
0.46 to 0.60 for the RNN and from 0.40 to 0.54 for the
FCN, suggesting complementary contributions.
Conversely, the XGBoost + LGBM ensemble yielded
lower predictive accuracy, with an average MSE of 249,935
COP2, MAE of 443 COP, and MAPE of 21.19%, but
demonstrated higher stability across different PSO-CS
configurations. The weights assigned by PSO-CS also
remained balanced (0.48–0.55 for XGBoost and 0.45–0.52
for LGBM), reinforcing the robustness of this combination.

In conclusion, while the RNN + FCN ensemble is more
suitable when precision is the primary objective, XGBoost
+ LGBM offers an advantage in terms of model stability
under varying optimization settings.

In the sensitivity analysis of the PSO-CS algorithm,
several hyperparameters were adjusted to evaluate their
influence on the performance of the ensemble models. N
represents the population size, that is, the number of
candidate solutions evaluated per iteration. T indicates the
number of iterations, which determines the duration of the
optimization process. c1 and c2 are acceleration
coefficients that balance individual learning and social
influence. w_max is the inertia weight factor, which
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Table 12
Sensitivity analysis of PSO-CS ensemble models (RNN+FCN and XGBoost+LGBM). Variation in model performance based
on changes in PSO hyperparameters.

Model N T c1 c2 w_max MSE (COP2) MAE
(COP)

MAPE
(%)

R2 w1 w2

XGBoost + LGBM 10 5000 1 1 0.6 249935.76 443.23 21.19 -4.93 0.48 0.51
30 10000 2 2 0.8 249938.63 443.24 21.19 -4.93 0.49 0.50
50 20000 3 3 0.99 249949.20 443.26 21.19 -4.93 0.53 0.46
10 10000 2 1 0.6 249954.16 443.27 21.19 -4.93 0.55 0.44
30 5000 1 3 0.99 249935.19 443.23 21.19 -4.93 0.48 0.51
50 10000 3 1 0.8 249936.56 443.23 21.19 -4.93 0.48 0.51

RNN + FCN 10 5000 1 1 0.6 70662.65 189.25 7.97 -0.68 0.46 0.53
30 10000 2 2 0.8 97092.70 229.31 9.69 -1.30 0.58 0.41
50 20000 3 3 0.99 98416.45 231.79 9.81 -1.34 0.59 0.41
10 10000 2 1 0.6 76602.42 197.07 8.29 -0.82 0.49 0.50
30 5000 1 3 0.99 99884.48 234.50 9.93 -1.37 0.60 0.40
50 10000 3 1 0.8 87545.82 212.77 8.96 -1.08 0.54 0.45

regulates the trade-off between exploration and exploitation
in the search space. Together, these parameters define the
algorithm’s behavior and affect the accuracy and stability
of the ensemble models.

For the model combination process using the PSO-CS
algorithm, a total of 20,000 iterations was established. This
value was determined through empirical testing with
configurations of 5,000, 10,000, and 15,000 iterations,
where the objective function (based on the mean squared
error) was observed to stabilize after approximately 15,000
iterations, without significant performance improvements
beyond that point. Therefore, 20,000 iterations were
selected as a suitable compromise to ensure adequate
convergence while maintaining a reasonable computational
cost.

Regarding the hyperparameter tuning of the LSTM and
FCN models, the Optuna library was used, employing the
Tree-structured Parzen Estimator (TPE) algorithm across
100 optimization trials per model. For LSTM, the
optimized parameters included the number of layers (1 to
3), units per layer (8 to 64), learning rate (0.0001 to 0.01),
batch size, activation function, and dropout rate (0 to 0.5).
For FCN, various dense layer configurations were explored,
including different numbers of neurons, activation
functions (tanh and ReLU), and learning rates. Time-series
cross-validation via TimeSeriesSplit was applied to
preserve temporal integrity, and the EarlyStopping
mechanism was activated to prevent overfitting. The
average training time per trial was approximately 8 minutes
in a GPU-enabled environment.

This tuning strategy ensured a balance between
predictive accuracy and computational efficiency, allowing
each base model to operate under its optimal configuration
within the ensemble process.

Table 11 presents the results obtained for the RNN +
FCN and XGBoost + LGBM ensemble models under
different PSO-CS configurations, including performance
metrics (MSE, MAE, MAPE, R2) and the weights assigned
to each model (w1 and w2).

Step 6: Uncertainty Quantification and Model
Reliability

Uncertainty quantification is a key component in
validating the robustness and reliability of predictive
models. In this study, a block bootstrap resampling
approach was implemented, which is particularly suitable
for time series data as it preserves the temporal dependence
between consecutive observations. This technique enables
the generation of an empirical distribution of predictions
based on multiple subsampled datasets, from which a 95%
confidence interval (CI) was constructed around the
ensemble model’s mean prediction. This interval is visually
represented by a shaded area, offering an explicit estimate
of the range within which the forecasts are expected to lie,
accounting for the inherent variability of the prediction
process.

The results demonstrate that the ensemble model
successfully captures the overall trend in the price series,
while also adequately representing the uncertainty
associated with the market dynamics. Both the predicted
and actual values mostly fall within the 95% CI, reinforcing
the statistical reliability of the model. Nevertheless, slight
underestimations are observed in some extreme values,
particularly during periods of rapid price increase a
common feature in aggregated models that tend to smooth
out fluctuations. As a potential improvement, the
integration of complementary models more sensitive to
sudden changes, or adjusting the ensemble’s internal
weighting scheme, may enhance responsiveness to highly
volatile scenarios without compromising the model’s
overall forecast stability. Figure 9 presents the results
obtained.
6.3. Model Validation: Multivariate Integration

To validate the robustness, accuracy, and generalization
capability of the multivariate model, this section presents a
strategy structured in three stages. First, an out-of-time
validation is conducted using unseen data beyond the
training horizon to evaluate the model’s forecasting ability
in real future scenarios. Second, an external validation is
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Figure 9: Uncertainty quantification and model reliability using ensemble prediction. The figure displays the mean prediction
generated by an ensemble model (XGBoost+LGBM), accompanied by a 95% confidence interval estimated via block bootstrap.
The shaded area reflects the uncertainty range across resampled predictions, highlighting the model’s ability to provide statistically
reliable forecasts.

performed using two different regional datasets
(Data3-Corn and Data4-Corn) from various Colombian
markets to assess the model’s transferability across diverse
geographical and commercial contexts, without the need to
adjust its parameters. Third, a comparative analysis is
carried out against benchmark models reported in recent
literature that use the same time series, allowing the
performance of the proposed approach to be contextualized
within the current state of the art. Together, these three
validation strategies provide a solid framework for
evaluating both the predictive accuracy and the practical
applicability of the proposed ensemble model.

Step 1: Out of Time Validation
To evaluate the temporal robustness of the proposed

ensemble approach, an out-of-time validation was
performed using unseen data from October 22, 2024, to
March 1, 2025. The models were tested on their ability to
generalize beyond the training period. Results show that
XGBoost achieved an RMSE of 21.47, MAE of 17.44,
MAPE of 0.62%, and 𝑅2 of 0.49. In contrast, LGBM
showed a significantly higher RMSE of 66.22 and MAPE
of 2.37%, despite achieving the same 𝑅2. Notably, the
ensemble model combining XGBoost and LGBM via the
PSO-CS algorithm slightly improved performance with an
RMSE of 21.45, MAE of 17.63, and MAPE of 0.63%,
maintaining the same 𝑅2 of 0.49. These results suggest that
while the ensemble model provided marginal error
reductions, the overall explanatory power (𝑅2) was
moderate across models in this extended forecast horizon.
Nevertheless, the consistently low MAPE values, especially
under 1%, highlight the models’ precision in predicting
weekly maize prices in out-of-sample conditions.

The detailed results of the out-of-time validation are
presented in Table 13, which summarizes the predictive

Table 13
Out-of-Time Validation Results (October 2024 – March
2025). Predictive performance of individual models (XGBoost
and LightGBM) and their ensemble (XGBoost + LGBM)
evaluated on unseen data beyond the training period. Metrics
reported: RMSE, MAE, MAPE, and 𝑅2.

Model Metric Out-of-Time Test
Set

XGBoost RMSE 21.47
MAE 17.44
MAPE 0.62%
𝑅2 0.49

LGBM RMSE 66.22
MAE 51.91
MAPE 2.37%
𝑅2 0.90

XGBoost + LGBM
(PSO-CS)

RMSE 21.45

MAE 17.63
MAPE 0.63%
𝑅2 0.49

performance of the individual models (XGBoost and
LGBM) and the ensemble model (XGBoost + LGBM
optimized via PSO-CS). The results obtained from this
validation show a slight decline in model accuracy
compared to the metrics reported in Tables 8 and 10 for
the standard validation and test sets. This behavior is
expected, as increasing the temporal distance between the
training and prediction data also increases the uncertainty
associated with structural, seasonal, or exogenous changes
not captured in the original dataset. Nevertheless, the
ensemble model (XGBoost + LGBM optimized with
PSO-CS) maintained acceptable performance in terms of
both absolute and percentage error, demonstrating adequate
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Table 14
Real vs. Predicted Prices – Out-of-Time Evaluation.
Comparison between actual maize prices and predicted values
by XGBoost, LGBM, and the ensemble model (PSO-CS) for
the period December 2024 to February 2025.

Date Real Price Predicted
Price
(XGBoost)

Predicted
Price
(LGBM)

Predicted
Price
(PSO-CS)

2024-12-11 2813.00 2773.84 2779.29 2774.69
2024-12-18 2803.00 2797.36 2798.90 2797.60
2024-12-27 2797.00 2797.94 2787.74 2796.36
2025-01-03 2822.00 2797.84 2795.43 2797.47
2025-01-08 2791.00 2811.94 2805.68 2810.97
2025-01-17 2796.00 2795.48 2796.20 2796.73
2025-01-22 2778.00 2795.14 2788.26 2796.63
2025-01-29 2820.00 2806.37 2803.79 2806.31
2025-02-05 2796.00 2810.69 2807.54 2810.62
2025-02-12 2844.00 2808.35 2806.29 2807.46
2025-02-21 2869.00 2806.84 2804.77 2806.78
2025-02-26 2878.00 2807.78 2804.56 2808.26

generalization capability. Although the coefficient of
determination (R²) was lower than in the standard tests, this
is consistent with the additional challenge of forecasting
future events that may exhibit different characteristics.
Overall, the results suggest that the proposed model can
adapt reasonably well to real-world and evolving scenarios.

The table 14 presents a detailed comparison between
the actual maize prices and the predictions generated by the
XGBoost, LGBM, and the ensemble model optimized
using PSO-CS. It shows the results corresponding to a
specific period within the out-of-time validation, covering
December 2024 to February 2025. All values are expressed
in Colombian pesos (COP) and reflect the behavior of
maize prices in the Granabastos market, located in the
Atlántico department. This comparison allows for the
evaluation of each model’s predictive accuracy against
real-world data not used during training. The table
highlights the models’ ability to follow short-term
fluctuations in weekly prices and detect turning points in
price trends. It also demonstrates the superior consistency
of the ensemble model in approximating actual values,
particularly during volatile weeks. Furthermore, the
closeness between predicted and observed values supports
the model’s capacity to generalize temporal and
market-specific dynamics. These findings reinforce the
practical applicability of the proposed ensemble for
operational decision-making in local agricultural markets.

Step 2: Model Validation Using Data3-Corn and
Data4-Corn

To validate the model, two different market time series,
Data3-Corn and Data4-Corn, were used without making
specific adjustments to the model parameters. The model
employed for validation corresponds to LGBM, XGBoost,
and their combination, as these achieved the best
performance in the forecasting phase using Data1-Corn and
Data2-Corn. This approach allows for the evaluation of the
model’s generalization ability, that is, its capacity to make

accurate predictions in different market contexts without
the need for additional customization or calibration.

By not adjusting the parameters for each series,
overfitting is avoided, and a more objective measure of the
model’s performance in real world scenarios is obtained.
This method is useful for assessing the robustness and
versatility of the model when faced with diverse datasets.

Figure 10 presents the external validation results of the
individual models LightGBM and XGBoost applied to the
Data3-corn (Montería) dataset, while Figure Figure 11
shows the predictions generated by the combined models
FCN + RNN and XGBoost + LightGBM on the same
dataset. In both figures, the red line represents the actual
test values, and the green line corresponds to the model
predictions. This comparison allows for the evaluation of
the individual versus ensemble model performance in an
external validation scenario.

The results of the validation of the individual LGBM
and XGBoost decision tree models and their combination
are presented in Table 15.

The validation results using Data3-Corn provide
evidence that the model is a reliable tool for predicting corn
prices in Colombia. Using the XGBoost model yields a
coefficient of determination 𝑅2 of 0.85, indicating that the
model can explain 85% of the variability of the test data,
which is a good level of fit. The RMSE of 91.78 COP, an
MAE of 74.62 COP, and a MAPE of 3.49% show smaller
deviations and predictions closer to the actual values.

For Data4-Corn, the model shows reasonable
performance. The 𝑅2 of 0.92 indicates that the model is
able to explain a significant part of the variability of corn
prices. The RMSE of 66.92 COP, an MAE of 50.23 COP,
and a MAPE of 2.12% show smaller deviations and
predictions closer to the real values.

The model product of the combination of
(XGBoost+LGBM) shows that for Data3-corn, a
coefficient of determination 𝑅2 of 0.85 is obtained,
indicating that the model can explain 85% of the variability
of the test data, which is a good level of fit. The RMSE of
86.66 COP, a MAE of 68.55 COP, and a MAPE of 3.16%
show smaller deviations and predictions closer to the true
values, which outperform the individual models. For
Data4-corn, this combination obtains a coefficient of
determination 𝑅2 of 0.78, indicating that the model can
explain 78% of the variability in the test data, which is an
acceptable level of fit. The RMSE of 128.16 COP, a MAE
of 107.16 COP, and a MAPE of 4.21% show smaller
deviations and predictions closer to the true values, without
outperforming the single XGBoost model.

Figure 12 shows the external validation of the
individual XGBoost and LightGBM models applied to the
Data4-corn (Barranquillita) dataset, Figure 13 presents the
results obtained from the ensemble model XGBoost +
LightGBM on the same dataset. In both figures, the red line
represents the actual values from the test set, while the
green line corresponds to the predictions generated by the
models. This comparison allows for the evaluation of
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(a) LightGBM on Data3-corn

(b) XGBoost on Data3-corn

Figure 10: Validation of individual models on Data3-corn (Montería). Forecasting results of LightGBM and XGBoost applied to
an external validation dataset.

Figure 11: Ensemble model forecast on Data3-corn (Montería). Prediction results using the XGBoost + LightGBM combination
optimized with PSO-CS.

individual model performance versus that of the combined
model in an external validation scenario.

The results from the Data3-corn and Data4-corn
datasets highlight the models’ ability to generalize to
unseen data. While individual models captured general
trends, they struggled with abrupt changes. In contrast, the
ensemble models provided more accurate and stable
predictions, reinforcing the value of hybrid approaches for
forecasting agricultural prices in variable real-world
conditions.

Step 3 Comparative Analysis with Previous Studies
Using the Same Time Series

When comparing the performance metrics of the
proposed multivariate model with those reported by Wang
et al. (2022) and Zeng et al. (2023) both based on the same
CBOT time series it is evident that the PSO-CS optimized
ensemble (XGBoost + LGBM) achieves a lower MAPE
(2.06%) than Wang’s (2.25%) and Zeng’s (3.41%) models.
This highlights the competitiveness of the proposed
approach, which also outperforms the neural ensemble
(RNN + FCN) developed in the same study. MAPE is

Table 15
Performance of individual models on Data3-corn and Data4-
corn. Evaluation based on RMSE, MAE, MAPE, and 𝑅2 using
external validation datasets.

Model Metric Data3-corn
(Monteria)
Test

Data4-corn
(Barranquillita)
Test

XGBoost RMSE 91.78 66.2
MAE 74.62 50.23
MAPE 3.49% 2.12%
𝑅2 0.85 0.92

LGBM RMSE 99.15 241.29
MAE 79.3 205.56
MAPE 3.55% 7.62%
𝑅2 0.8 0.43

(XGBoost+LGBM) RMSE 86.66 128.16
MAE 68.55 107.16
MAPE 3.16% 4.21%
𝑅2 0.85 0.78

particularly suitable for this comparison, as it provides a
scale independent metric for consistent evaluation. These
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(a) XGBoost on Data4-corn

(b) LightGBM on Data4-corn

Figure 12: Validation of individual models on Data4-corn (Barranquillita). Forecasting results of XGBoost and LightGBM applied
to an external test set.

Figure 13: Ensemble model forecast on Data4-corn (Barranquillita). Prediction results using the XGBoost + LightGBM
combination optimized with PSO-CS.

Table 16
Comparison of best-performing ensemble models from
reviewed studies and this research. Highlights performance
improvements achieved in this study relative to the literature.

Combined Model MAPE (%)

PSO-CS (Wang et al., 2022) 2.25
PSO-CS (Zeng et al., 2023) 3.41
PSO-CS EMD Trees (This study) 2.06

results position the proposed model as a robust and accurate
alternative within the current state of the art.Table 16
presents a comparison of the most accurate ensemble
models reported in the literature with the one proposed in
this study. The comparison highlights the improvement in
MAPE achieved by the PSO-CS EMD Trees ensemble.

In summary, the comparative analysis confirms that the
proposed multivariate ensemble model optimized with
PSO-CS not only demonstrates superior predictive
accuracy over individual and neural-based models but also
outperforms benchmark approaches reported in recent

literature using the same CBOT time series. The
consistently lower MAPE values underscore the
effectiveness of integrating heterogeneous models with
multivariate data and advanced optimization techniques.

7. Implications and Scalability of the
Proposed Model in the Colombian Context
The results obtained from the proposed model

demonstrate not only methodological advancements in
multivariable price forecasting but also significant practical
potential. In the case of maize in Colombia, the model
exhibited strong capabilities in anticipating price
fluctuations, which is particularly critical given that
approximately 80% of national demand is met through
imports (UPRA, 2022), and that the prices of basic food
products such as chicken and eggs are closely tied to the
cost of this grain (Colombia Mercantile Exchange, 2023;
Arbeláez et al., 2024). These findings support the
feasibility of employing such tools to inform decisions
regarding public procurement, subsidies, reference pricing,
and early warning systems. Furthermore, the proposed
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application aligns with the guidelines of the National
Development Plan 2022–2026 (Departamento Nacional de
Planeación (DNP), 2022), which prioritizes food security,
territorial productive planning, and the strengthening of
agricultural information systems.

Given its flexible and scalable design, the proposed
model can be adapted to other strategic agricultural
commodities such as rice, soybeans, or coffee, as well as to
different regions of the country with diverse productive and
commercial dynamics. This would require adjusting the
explanatory variables and incorporating additional data
sources specific to each context, including factors such as
logistics infrastructure availability or regional agricultural
policies.

One of the main challenges identified for the practical
implementation of this type of system in the Colombian
agricultural sector is the effective integration of climatic
and public policy variables elements not included in this
initial stage of the study, but whose incorporation could
significantly enhance the model’s predictive capacity and
broaden its applicability. Additionally, it is necessary to
improve interoperability across data platforms, ensure the
quality and frequency of collected information, and
promote the adoption of advanced analytical tools among
producers, associations, and public institutions. Addressing
these barriers will help consolidate a more comprehensive
and operational forecasting system, contributing to a more
informed, resilient, and sustainable agricultural sector in
Colombia.

8. Conclusions
This study highlights how combining multiple time

series sources can represent a significant step forward in
agricultural price forecasting, particularly for maize in
Colombia. By combining local data, such as historical
prices from the Granabastos market, with external
information, such as maize futures from the Chicago Board
of Trade (CBOT), the model was able to capture important
interactions between domestic and global markets,
ultimately leading to more accurate predictions.

The hybrid model developed in this work, which
combines XGBoost and LightGBM and fine-tunes them
using the PSO-CS algorithm, achieved a MAPE of 2. 06%
in the multivariate test set (Data1-Corn and Data2-Corn).
This performance significantly outperformed both the
individual models and the neural network ensemble (FCN
+ RNN), which reached a much higher MAPE of 30.74%.
These results underscore the importance of integrating
information from diverse sources, particularly in
environments where international market trends have a
significant impact on local prices.

Even when tested in out of time scenarios from October
2024 to March 2025, the model maintained a high level of
accuracy (MAPE = 0.63%), demonstrating its ability to
adapt to new, unseen conditions. In external validations
using datasets from other Colombian markets Data3-Corn
(Montería) and Data4-Corn (Barranquillita) the model

continued to perform well without requiring retraining,
achieving MAPEs of 3.16% and 4.21%, respectively, along
with 𝑅2 values of 0.85 and 0.78. This consistency suggests
strong generalization capacity across regions with distinct
characteristics.

The strong performance of XGBoost and LightGBM
can be attributed to their ability to model complex,
nonlinear relationships, manage multicollinearity, and
effectively incorporate external variables. In contrast,
neural networks struggled due to their sensitivity to noise
and the larger data volumes they typically require.
Furthermore, applying Empirical Mode Decomposition
(EMD) enabled the breakdown of the original time series
into simpler components IMF1, IMF2, and the residual
making it easier for the model to capture distinct temporal
patterns.

Lastly, the use of PSO-CS for optimizing model
weights played a key role in ensuring a balanced and stable
ensemble. The sensitivity analysis confirmed the reliability
of this optimization process across different configurations.
Taken together, these findings demonstrate that integrating
multivariate time series is not only a viable but also a
powerful approach to enhancing prediction accuracy and
model resilience in the face of market volatility. This work
offers a valuable methodological contribution to the field of
agricultural price forecasting, especially in contexts where
local and international dynamics intersect.

Finally, the proposed model, based on the integration of
multivariate time series, is adaptable to other agricultural
commodities such as rice, potatoes, or beans, provided that
relevant price data and exogenous variables are available.
Its application in different regions will depend on the
quality and availability of data, as well as institutional
support for its management. The main challenges for its
implementation in Colombia include technological gaps in
rural areas, the need for technical training, and
inter-institutional coordination to consolidate a robust
agricultural information system. Nevertheless, the results
show that it is possible to build highly accurate predictive
tools that support strategic decision-making and contribute
to the country’s food security.
Limitations

Although the proposed approach has shown strength in
terms of accuracy, stability, and multi-source integration,
several limitations must be acknowledged. The model
presents high computational complexity and depends on
careful hyperparameter tuning, as well as the quality of the
initial decomposition process (EMD). Additionally, while
out-of-time validation and testing on external data sources
not used during training supported its generalization
capability, extending the model to other agricultural
products or international markets still requires further
validation and potential adjustments based on the specific
characteristics of each time series. These considerations are
essential to guide future implementations of the model in
diverse contexts.
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