
A CORBA infrastructure to provide distributed GPS data
in real time to GIS applications

P. R. Muro-Medrano

D. Infante
J. Guillo

J. Zarazaga
J. A. Bañares

Computer Science and System Engineering Department

Centro Politécnico Superior
Universidad de Zaragoza

María de Luna 3
50015 Zaragoza, SPAIN

 {prmuro,dinfante,jguillo,javy,banares}@posta.unizar.es

http://diana.cps.unizar.es/iaaa

Abstract
This paper shows a distributed object-oriented architecture to
provide GPS data to GIS applications. Data captured in real
time by GPS units are sent via radio to the computer. Several
sources of this real data in addition to simulated GPS data are
distributed in a computer network. These servers of GPS data
can be accessed by distributed client applications. A CORBA
based infrastructure provides the integration and distribution
mechanisms. Client applications range from simple GUIs for
GPS remote control to GIS applications used for automatic
vehicle monitoring.. The basic components to provide the radio
communications and GPS data servers are presented in detail.

1.Introduction
The reduction in price of radio communications together with
steps forward in the field of data captured in digital format
(using handheld computers in the fields, and GPS units), and
the development of the distributed object-oriented technology
are the technologies that have revolutionised the possibilities of
GIS applications functionality. Automatic vehicle monitoring
(AVM) is a prototypical application that requires the integration
of mentioned technologies: Radio communication that provides
wireless interaction between different devices, communication
software, Global Positioning Systems (GPS) [5], GIS, access to
databases to integrate data with non-spatial data, etc. [6]. These
technologies enable the acquisition of vehicle locations in real
time and the visualisation of vehicles in a map.

The need to optimise service costs, the increase of rivalry in the
transport sector, and the interest of public institutions to
promote public transport have persuaded many enterprises to
integrate tracking and fleet control systems with their
information systems. Fleet management aid systems that
incorporate these technologies permits the recompilation of real
operation parameters. They offer users a real time information
that allows incident control and a valuable information for end-
users of public transport [1].

Although AVM applications require a set of common services
(acquisition, communications, GIS, ...), requirements and
needs of each client are very different in resources and
functionality, and therefore, they need "ad hoc" solutions. The

work in this domain with new software technologies is just
beginning [3]. However, the cost of these "ad hoc" solutions
may only be affordable by the design of a flexible architecture
that makes use of new software technologies, such as
distributed object-oriented systems, and where features as
interoperability and reuse are appropriately considered. In this
sense, it is required that Geographic Information Systems (GIS)
provide much more than a map to provide the framework for all
the major functionality of an application. Applications must be
able to transform themselves intelligently by reusing useful
parts and incorporating new technologies to extend their
capabilities [2].

This paper shows the basic ideas of OODISMAL; an object
oriented distributed information system for mobile automatic
location. OODISMAL provides the basic components to
integrate radio communications and real-time data captured by
GPS units with GIS components. These components may be
easily adapted to any kind of radio or sensor to capture data.
Firstly, the technological approach to develop the OODISMAL
architecture and its basic components is explained. Following,
design decisions and a detailed explanation of modules and
operation of main components is given. In §3 the radio
component server that provides to all computers in the local net
the functionality of a trunking radio connected to a PC. In §4
the data acquisition component that uses the radio to extract
from received messages the data captured by different GPS
units. The integration of the radio and data acquisition
components with GIS to develop final applications is detailed
in §5. Finally, in §6 the conclusions are presented.

2. OODISMAL Architecture

2.1 Technological approach
The technological approach that has been adopted in this work
is based on the new technologies of distributed object-oriented
systems. The object model makes easier the co-operative work
and the reuse by means of encapsulation. However, it is not
sufficient. The fast evolution of new technologies suppose the
cohabitation of a great diversity of machines, operating systems
and programming languages that makes difficult the
maintenance of systems. It is important to make compatible

new applications with applications that use old and
heterogeneous technologies. The present tendency to afford
these difficulties is the development of distributed client-server
applications using component software technology [7], [10].

Component Software technology makes possible the
development of light applications where it is solved the specific
problematic of the application, whereas the basic functionality
is provided by reusable components. A distributed client-server
application, where clients and servers may be resident in the
same or different machines, makes possible to increase the
system functionality without the modification of reused parts.
Servers are used only when it is necessary, and may be shared
by several light remote or local clients.

 Our research group has therefore been considering
international computer industry standards for developing
distributed object-oriented systems. In particular the Object
Management Group's (OMG) Common Object Request Broker
Architecture (CORBA) [9]. CORBA has been used as the
middleware infrastructure to provide interoperability and to
distribute functionality. In CORBA, applications are viewed as
objects, and their functionality is provided through their object
interface, no matter they are programmed in an object-oriented
language [VIN95]. From the implementation point of view,
clients of a remote CORBA component deal with them as local
objects. CORBA components may be running in the same or in
different computers in a transparent way.

It has been necessary to consider other component technologies
because many commercial components often use the
Microsoft's Distributed Component Object Model (DCOM),
which is the de facto "other standard". Finally, we have also
considered Java, the third component technology to be
considered, because it supposes the perfect complement to

CORBA. CORBA offers an infrastructure that provides
interoperability, and Java provides an infrastructure for mobile
code. In this way we may do CORBA ubiquitous in the net [8].
The main advantage of this language is that a Java program
may be easily transformed in a Java applet that may be
downloaded in any computer connected to Internet. It makes
Java the best option to develop light client that provides
portable GUI to access the functionality of server components.

2.2 OODISMAL Overview
OODISMAL is an information system that is composed of a set
of distributed components in a LAN. These components
interoperate between them using the CORBA infrastructure,
and provide the basic services for location data acquisition,
radio telecommunications, and the storing and processing of
acquired data. If every object were a CORBA object it would
suppose an unnecessary overhead of communications and
would produce coupled components. Consequently, each
component interface is defined clearly by a reduced number of
CORBA objects. Each component works as a server of its
interface CORBA objects and uses, as a client, the CORBA
objects that needs from other components.

In object-oriented systems, components typically interact with
each other by explicitly invoking their services. OODISMAL
also uses an event based, or implicit invocation mechanism.
The idea is that instead of invoking a procedure directly, a
component can announce one or more events. Other
components in the system can register an interest in the
reception of an event. When the event is announced, the
registered component is notified and executes some service.

Network

Communications

GPS1
long: -0.987
lat: 43.2245

Generating
locations...

GIS Visualization

Simulation

Data
Acquisition

Figure 1. OODISMAL system

Figure 1 shows OODISMAL as a distributed system with the
basic components that interoperate using CORBA to visualise
in digital maps real-time location of vehicles. The working of
these components is orchestrated by the reception of radio call

with GPS data information, and their responsibilities are the
following:
• The radio component works as a CORBA server that

offers to the CORBA bus the messages received by the

radio connected to a PC in the LAN. It also offers the
functionality to make different kind of call through the
radio.

• The data acquisition component works as a client of the
radio component to receive data from remote GPS, and as
a server that offers location information to the CORBA
bus.

• The simulation component allows the developer to tune the
system simulating the reception of messages with GPS
information. It has the same interface that the data
acquisition component. In this way its clients do not
distinguish real form simulated data. The only difference
is that simulated location data are taken form a database
through the persistence component.

Functionality of these components is offered to the CORBA
bus. So, any new client application may be introduced in the
system simply by registering it for the events provided by
components. CORBA supports interoperability, and its
client/server style provides strong support for reuse. For
example, the simulation component and the acquisition
component may be interchanged without affecting its clients
because they offer the same interface. Enhanced versions of
these components may be developed without affecting client
applications. When a vehicle tracking application initiates, it
may look for CORBA servers that provides vehicle locations in
the LAN, and can choose any of them.

Previous functionality may be easily integrated in a GIS
framework. It allows the visualisation in digital maps of real-
time vehicle locations provided by the data acquisition
component, the access to the radio of visualised vehicles, or the
visualisation of analysis results of routes recorded in a database.

Finally, computers in which components reside may offer light
Java clients that may be downloaded from any computer
connected to Internet. It allows the user the supervision of
components. For example, it is possible to access data
acquisition components and show in a window the last data
received from each GPS. A simple version of the tracking
application has been developed in Java. It allows Internet users
the visualisation in digital maps of real-time locations.

3. Radio Component
This component has the responsibility of handling and making
accessible, to several clients, all radio typical features using a
narrow and well-defined interface of allowed operations. Those
features include communicating information and establishing
different kinds of calls using the radio physic communication
channels, such voice channel, data channel and control channel.
The flow of information between the clients of this component
and the radio device is in two senses. On one hand, some clients
may ask to send a message, which is coded and sent through the
serial port to the radio device. On the other hand, other clients
may register in the component to be notified when a message
arrives, and to receive it decoded.
The choice between different radio devices depends on
different factors such as price and functionality. We consider
trunking radiotelephony the best option due to its fixed cost (it
is not charged by the number of calls, the working time, or the
number of transmitted data). The component has been
developed for a T500 voice terminal with GPS option
developed by Teltronic. The integration of the GPS inside the
radiotelephone reduces the dimensions and prize, and offers a
better portability. In any case, different kind of radios provides
different kind of capabilities, but a great number of this features
are common to all radio devices and these are the operations
offered by the radio component. This allows creating different
instances of the radio component using different kind of radio
devices, but maintaining the interface, so the same capabilities
are offered device independent.

3.1 Radio CORBA Interface
The radio component has been built as a CORBA server. In this
case, it is so important to reuse the radio device as the software
component. By providing a CORBA server that controls the
radio, it is possible to access to the same radio from every
computer that is connected to the network. The entire
interaction with the radio component is made through several
CORBA interface objects, as illustrated in figure 2.

Receiver

ReceivePacket(packet : Packet) : return
HandleResult(res : CallResult)

Radio

MakeVoiceCall(pkt : Packet, rcv : Receiver)
MakeLongDataCall(pkt : Packet, rcv : Receiver)
SendLongData(pkt : Packet, rcv : Receiver)
SendShortData(pkt : Packet, rcv : Receiver)
AttachReceiver(rcv : Receiver)
DettachReceiver(rcv : Receiver)

0..* 10..* 1

Packet
data : sequence<octet>
address : string
retries : integer
timeBetweenRetries : integer
extra : sequence<octet>

CallResult
call : Packet
OK : boolean
message : string

Figure 2. Radio Interface Objects

The Radio CORBA object is the interface to the radio
component. It has services for making calls and registering
clients for receiving incoming calls. The Receiver CORBA
object is an interface through which the component will
communicate with the client. A client must implement a
Receiver object in order to use the radio component. The client
can use a Receiver to interact with the radio component in two

different ways. On one hand, the client may specify a Receiver
when it makes a call, in order to get the result of that call
through the Receiver. On the other hand, a client may register a
Receiver in the component to receive any incoming message.
The client can implement the Receiver to do whatever is
necessary when this information arrives. In this way, any
component or application which implements a Receiver can be
a client of the radio component.

Both Packet and CallResult are CORBA data objects; that is,
they contain data but no services. They are used to send packed
data between the Radio and the Receivers. The Packet object
contains data for either incoming or outgoing calls. Therefore,
it is used to specify a call that a client wants to make and it is
also used to send incoming messages to the Receivers. The
CallResult objects contains information about whether a call
has been sent successfully or not.

3.2 Modules and Operation of the Radio
Component
Figure 3 shows the modules and operation of the radio
component. The Clients Managing module offers the Radio
CORBA object, which has been explained above.

The process for making a call is the following. A client requests
a radio service through the Radio object. The client must send
to the radio a Packet containing the data and destination address
of the call. A Receiver object may also be specified if the client
wants to receive the result of the call. As the kernel module
receives the user request, it builds the corresponding radio call.
Then, the built call is sent to the radio device by a COM port
using the low-level radio communication protocol and the
device makes the call. The low-level protocol module
implements the access to the serial port and the low-level
communication protocol of the specific radio device. At the
present, two protocols are implemented, one for trunking radios
and another one for 40 MHz radios.

This simple operation lacks for robustness when used
intensively, because some calls may not have been made due to
different problems such as channel occupation, or the
disconnection of the called device. If this happens, the call
would be lost. In many situations, a call loss can not be
afforded. To solve this problem a scheduling system has been

incorporated into the kernel module. The client can specify, in
the Packet object, how many times the component is going to
try to send the call, and the time between these retries. The
scheduler has the responsibility for queuing the calls,
scheduling them according to the timings specified for each
call, and trying to send each one as many times as the client
programmed. When either the call has been successfully sent or
it has used up all its retries, the component will send a
CallResult object to the Receiver specifying the result of the
call.

On the other hand, if a client wants to receive any incoming
call, it must register a Receiver in the radio component. This
behaviour is based on the Subject-Observer pattern [4]. This
mechanism defines a one-to-many subscription relationship
between components, so that when one component changes
state, all its subscribed components are notified and updated.

Following this pattern, a client registers a Receiver in the
component through the Radio object. From that moment on, the
Receiver will get every incoming message. When a message is
received from the low-level protocol module, the kernel extracts
its data and source address. The kernel module will build a
Packet object with all this information and send it to all the
registered Receivers. This way, the client does not have to
worry about asking the component for messages. Whenever a
message arrives, the client will be notified through its Receiver
object. Note that every Receiver will get every message, so
clients must filter those messages they are interested in.

In order to allow users to monitor the component working, a
basic GUI is provided. It shows the incoming and outgoing
messages in a text window, along with other relevant
information. In the following section it is shown how to use this
component to develop specialised data acquisition components,
such as real time location of several vehicles that incorporate a
radiotelephone with an integrated GPS.

CClliieennttss
MMaannaaggiinngg

CClliieenntt

RRaaddiioo KKeerrnneell

SSeerriiaall
ppoorrtt

MMeessssaaggee ddeeccooddeerr

CCaallll ccrreeaattiinngg
aanndd
sscchheedduulliinngg

CCaallll

CCaallll

LLooww lleevveell
pprroottooccooll

GGUUII

CClliieenntt

CClliieenntt

Figure 3. Modules of the Radio Component

Observer

Update()

Subject

Attach()
Dettach()
Notify()

10..*

GPS
identifier : string
parameter : string
period : integer
threshold : integer
longitude : float
latitude : float
time : date
heading : integer
speed : integer
status : statusType

UpdateLocation()

GPSManager

CreateGPS(id : string, param : string, period : integer, threshold : integer)
EraseGPS(gps : GPS)
GetAllGPS() : GPSList
GetGPS(identifier : string) : GPS

0..* 1

Figure 4. GPS Interface Objects

4. Data Acquisition Component
The GPS component has the responsibility to offer location
information of several vehicles, in which a radio and GPS
device has been installed, using a real time communication
mechanism. The GPS component uses the radio component
described in the previous section to make and receive the radio
calls. These physical radio calls are transformed in location and
time information that can be used by the system. The basic
information is composed by position, given by latitude and
longitude values. More complete information can be offered.
This information can include velocity, bearing, and GPS signal
status, as required by clients.

4.1 Acquisition data CORBA Interface
The GPS blocks are the logical representation of the GPS
devices. GPS blocks are composed by the CORBA interface
objects illustrated in figure 4. Every GPS device that needs to
be tracked has a counterpart GPS object in the component. This
way, clients of the data acquisition component can use all the
functionality of the remote GPS devices through these objects.
There is also a GPS manager which allows clients to access all
the GPS objects in the component, create new objects to
represent other GPS devices and delete existing objects which
do not need to be used any more.

GPS objects contain the last location received from the physical
device. Clients can register in any GPS object so that they are
notified when a new location is received, following the subject-
observer pattern. To achieve this, clients must implement one
or more Observer objects. The generic Subject object provides
the mechanisms to register Observers in an object. The GPS
object inherits this behaviour from Subject. The client can
retrieve a complete list of the GPS objects in the component
from the GPS manager. Once the Observer is registered in the
GPS, the pattern starts to work. Each time the GPS’s position
changes, the Observer is notified, so it can perform the task it is
programmed to. It can be built a lot of kinds of clients, clients
that prints textually the information on a screen, clients that

displays the position graphically, or even clients that makes
calculus or stores information treating it in some way.

Additionally, some clients may be interested in accessing to the
last location of a vehicle when they are interested, therefore
they may not require a subscription to the event notification
mechanism provided by the GPS component. Of course, these
clients do not need to implement any Observer object.

4.2 Modules and Operation of the Data
Acquisition Component
Figure 5 provides a complete overview of the component’s
work and general organisation. GPS devices can be configured
to send their location every time a given period is elapsed or its
location changes in a given distance, which is called threshold.
The GPS objects have services to access this functionality. The
configuration of every GPS object in the component is stored in
a database. When the component is initiated, this configuration
is retrieved from the database and sent to the GPS device, so
that its behaviour is always the same.

The GPS objects need to communicate with the physical
devices using the radio component for configuring them and
receiving their locations. This is achieved through the message
manager module, whose structure is illustrated in Figure 6.

The message manager has the responsibility for dealing with all
the messages which go to and come from the radio component.
The message manager inherits the behaviour of the Receiver
interface (explained in the Radio Component). In this way, it is
able to register itself as a client of the radio component to
receive incoming calls using the mechanisms explained earlier.

Note that a Receiver registered in the radio component will
receive every call that is sent to the radio device, and these may
include unwanted messages. By centralising the reception of
messages in the message manager, the messages can be easily
filtered and then dispatched to the appropriate GPS object if
they are true GPS messages.

Database
RRaaddiioo CCoommppoonneenntt

Kernel

OObbsseerrvveerr

OObbsseerrvveerr

OObbsseerrvveerr

OObbsseerrvveerr

Automatic
storage

GGPPSS
GGPPSS
GGPPSS

GGUUII
Polling

Process

MMeessssaaggee
MMaannaaggeerr

CCooddiinngg DDeeccooddiinngg
MMoodduullee

Figure 5. Data Acquisition Component

When a GPS message is received, the message manager verifies
whether the source address matches any recorded GPS in the
component. If so, the coding/decoding module extracts the
location information from the binary message and updates the
information contained in the GPS object. Then, the GPS
notifies its observers that its information has changed, so they
can get its new location.

The message manager is also used to build and send any
message that the component needs to send to a GPS device, for
configuring it or asking its position. First, the message manager
asks the coding/decoding module to build the necessary
message, and then uses the radio component to send it to the
GPS device. Because the message managing is centralised it is
very easy to adapt the component to another kind of GPS
devices that may understand a different set of messages. Most
times, it is only necessary to change the coding/decoding
module. Even if the message manager had to be modified, the
rest of the component would remain unchanged because it
interacts through a generic message manager.

The above explanation covers the kernel capabilities of the data
acquisition component, but there are other features that give the
component a greater functionality. There are three additional
features in the component: the automatic location storage, the
stop detection and the polling process.

The two first features have been implemented as small modules
inside the kernel, expanding its functionality. The automatic
storage module is integrated within the GPS objects and the
GPS manager and stores in a relational database all the
locations received by every GPS. Each object has an associated
table in the database, where it stores each position it receives.
The associated table is changed everyday, so the module
generates a table for each GPS and day. Besides, the tables
have a limited lifetime, so they are deleted after a specific
number of days. This way, the database is not saturated, and
there is no unnecessary waste of hard disk space. The user can
configure this lifetime, as well as the hour for table change.

The stop detection module detects when a vehicle has not
moved during a given time and activates a flag in the GPS
information so this can be showed in a GIS using a special
colour. It is also stored in the database so that it can be checked
later.

The polling module is separated from the kernel and
implements a special process for obtaining the locations from
the GPSs. Instead of configuring the GPSs to automatically
send their location, the polling module asks the location of each
GPS in turn. This way, there is no saturation in the radio
network and no collisions between radio calls. The polling
process can be configured for every GPS in the component, or
only for a few.

Finally, the GUI module allows an external user to monitor and
configure the different features of the component through a
graphical interface. The GUI module is a Java light client that
may be downloaded to any computer connected to Internet.

As it has been seen, the acquisition component is a CORBA
server that makes the location information accessible through
the CORBA bus. Several final applications may use location
information offered by this component for different purposes,
such as fleet control, offering users the locations of vehicles in
a map through Internet, etc. It may also be possible to integrate
directly this component in final applications without a
distributed infrastructure. This may be decided due to security
and efficiency. There are a number of linked references
between this component and its clients, raising the number and
length of network communications, making it a little less
efficient.

This component is only an example of a radio client,
specialised in dealing with position calls. However, there could
be other components that would act as radio clients that could
observe and filter other kind of calls, like alarms, input/output
systems and so, in addition to the use of the radio for voice
calls.

GenericMessageManager

SetPeriod(gps : GPS, period : Integer)
SetThreshold(gps : GPS, threshold : Integer)
AskLocation(gps : GPS)
Initialize(gps : GPS)
AddGPS(gps : GPS)
RemoveGPS(gps : GPS)

GPS

Radio
Receiver

ReceivePacket()
HandleResult()

MessageManager

CodingDecodingModule

AskLocation() : Packet
ActivatePeriod(seconds : Integer) : Packet
DeactivatePeriod() : Packet
ActivateThreshold(meters : Integer) : Packet
DeactivateThreshold() : Packet
SendBaseAddress(baseAddress : TrunkingAddress) : Packet
DecodeLocation(received : Packet, gps : GPS)

Figure 6 Messaging Objects

5. Final Applications
The first domain component developed to provide integration
of basic services according to more specific clients has been an
AVM application. This component integrates the functionality
of all previous basic components to perform vehicle tracking
and to show the locations of vehicles in real-time. The
integration of functionality allow us to perform a radio voice
call selecting a vehicle on the map, to show the location of the
vehicle in real time, or to graphically visualise the result of any
route analysis. A lot of final applications can be built using the
same hardware and software set-up.

In order to show how previous components are orchestrated to
provide required functionality let us show how they are
incorporated in a final application, and how it may be
configured. Firstly, the best framework to provide all the major
functionality of the kind of applications we are dealing with is a
geographic information system (GIS). For example, the graphic
visualisation of a fleet of vehicles’ locations and the capability
of interact with it, is one of the most obvious and attractive
functionality of a final application.

Therefore, the visualisation component has two main
responsibilities: On one hand it has to provide GIS capabilities
in order to visualise vehicles over maps. On the other hand, it
has to provide mechanisms to access fleet information, manage
it and exploit its capabilities to the maximum, as a usual
information system but enhanced with GIS capabilities. The
fleet interaction capabilities, like path analysis or making voice
calls to the vehicles are accessed through the GIS capabilities,
being able to select vehicles by clicking on the map and
displaying results in a geographical way, over a geo-referenced
map.

Figure 7 shows the graphical windows to visualise a fleet. The
way to incorporate into the GIS the real-time locations of
vehicles has two possibilities: The first one, to use the subject-
observer pattern. In this way, the data acquisition component
would notify us whenever a new position received from the
vehicle is processed. The second one, to periodically query the
server.

A tracking vehicle component has been developed increasing
the functionality of the data acquisition component. The

tracking vehicle component tracks vehicles that may follow a
predetermined route. Locations received from the GPS
component are adjusted to the route if this route is provided. In
this way, a simple correction to the GPS error is provided.
More functionality may be easily incorporated. For example,
some public services have an associated itinerary pattern with
temporal information that may be used to make better
corrections and estimations in the case GPS locations are not
being received.

The interface of any enhanced component is the same of the
data acquisition component explained above. In this way, they
may be interchanged. Moreover, the applications may locate
and connect as clients of different CORBA servers in the LAN
that provide real-time locations. So, it is possible to visualise in
the same map vehicles whose location is provided by the same
or different radios and data acquisition components.

The rest of the functionality of the radio and data acquisition
component may also be accessed trough the GIS framework. As
mentioned, it allows us to perform radio voice call, or configure
a GPS device selecting a vehicle on the map.
Additionally, it has been incorporated to the GIS framework a
more specific functionality, which is required in applications of
AVM. It is worth to point out the possibility of storing
historical locations (routes) that may be analysed by an off-line
route analysis component. The results of queries about these
routes may be graphically displayed.

Finally, the web component offers light Java clients to
configure components and to visualise any information. It is
worth to note a simple Java version of the visualisation
component. It only allows the visualisation in real-time the
location of vehicles in digital map. Neither GIS nor the rest of
previous functionality is incorporated. It uses the same
mechanism to incorporate real-time locations of vehicles. In
fact the component is an applet that can be loaded by any
Internet browser with a Java plug-in. The CORBA
infrastructure also is downloaded, therefore once it is
downloaded it may attach as client of any data acquisition
component.

Figure 7. GIS Visualisation of a vehicle fleet

The distributed configuration of these components may be
adapted to the requirements of clients. All components may be
installed in a single computer, or it may be installed in different
working areas. The operation of software components is
independent from the chosen configuration.

6. Conclusions
In this paper, we have presented an architecture that provides
the basic components to integrate the functionality of
Geographic Information Systems (GIS), with the functionality
of radio telecommunications. Over the radio component it is
possible to build different components to capture data, such as
vehicle’s location acquisition in real time using GPS units. The
integration of functionality of the radio and data acquisition
component with GIS capabilities provide mechanisms to access
fleet information, manage it and exploit its capabilities to the
maximum in a synergic way. These components are the kernel
of any application for vehicle tracking.

CORBA has been used as the middleware infrastructure to
provide interoperability and to distribute functionality. Any
application may look for different servers in the LAN that
provide a predetermined CORBA interface, and use them.
Moreover, it may be notified of any change of state in servers
simply by registering itself for the events that they provide. For
example, the simulation component and the acquisition
component may be interchanged without affecting its clients;
and a GIS viewer may visualise the location provided by
different data acquisition components.

Java allows downloading the CORBA infrastructure. In this
way Java has been chosen to develop light clients that may be
downloaded in any computer connected to Internet. A simple
map Java viewer that shows real-time location has been
developed.

The advantages of the proposed architecture are:

• A GIS viewer provides the framework to offer
all the major functionality. In this way, the
functionality of other components may be
graphically integrated with a digital map.

• It allows a flexible development. All components
may be easily interchanged by new components
with enhanced functionality (or cohabit with
them). In this way it is possible to increase the
functionality without the modification or
previous parts.

• Components may be reused in several
applications. For example, the radio component
may be used by data acquisition components that
filter alarm messages or data received of any
kind of sensor.

• Applications may be configured in different
ways according to the requirements of the client.
It is not necessary any modification of
components to configure different final
applications. The proposed architecture is
scalable according to the client’s requirements.

A final application that integrates OODISMAL components to
AVM has been illustrated. In the future, new data acquisition
components that integrate information coming from different
sensors will be developed. The OODISMAL infrastructure
may be enhanced with new specialised domain server such as
public urban and interurban bus transport. It implies the
development of new components specialised in tickets, user
information, fleet management, etc.

Acknowledgements
This work was partially supported by the Comisión
Interministerial de Ciencia y Tecnología (CICYT) of Spain

through the project TIC98-0587 and by the project P-18/96 of
the CONSYD de la Diputación General de Aragón.

References
[1] B. de Saint-Laurent and K. Bourée. “Eurobus

Project. Final Report”. DRIVE PROGRAMME,
Eurobus Project V2025.

[2] L. Hecht. “GIS Helps Utilities Thrive in A
Deregulated Environment”. ESRI ArcUser
Magazine. Jul-Sept.1998. (http://www.esri.com/
news/arcuser/798/utilities.html)

[3] Ted Foster and Liping Zhao . “Structuring the
Network Model to Service More Functions”.
Report to assess the impact on Transmodel
Version 4.1 of some of the change request raised
within the Titan Data Model Management Group.
1998.

[4]. E. Gamma, R. Helm, R. Johnson, J. Vlissides.
Desing Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley
Publishing Company. 1994.

 [5] E.D. Kaplan (ed.). Understanding GPS Principles
and Applications. Artech House Publishers. 1996.

[6] E.J. Krakiwsky. “Tracking the Worldwide
Development of IVHS Navigation Systems”. GPS
World, V 4, N 10, pp. 40-47. October, 1993.

[7] R. Orfali, D. Harkey and J. Edwards. The
Essential Client/Server Survival Guide CORBA.
Wiley Computer Publishing. 1997.

[8] R. Orfali, D. Harkey. Client/Server Programming
with Java and CORBA. Wiley Computer
Publishing. 1998.

[9] Object Management Group. Object Management
Architecture Guide, Version 3.0. Framingham,
MA: Object Management Group, 1995.

[10] C. Szyperski. Component Software. Beyond
Object-Oriented Programming. Addisson Wesley,
1997.

[11] S. Vinoski. CORBA: Integrating Diverse
Applications within Distributed Heterogeneous
Environments. IEEE Communications Magazine,
pp 46-55. Feb. 1997.

